Abstract
Recently, numerous numerical schemes for solving linear time fractional diffusion-wave equations have been developed. However, most of these methods require relatively high smoothness in time and need extensive computational work and large storage due to the nonlocal property of fractional derivatives. In this paper, an efficient scheme and an alternating direction implicit (ADI) scheme are constructed for one-dimensional and two-dimensional nonlinear time fractional diffusion-wave equations based on their equivalent partial integro-differential equations. The proposed methods require weaker smoothness in time compared to the methods based on discretizing fractional derivative directly. They are proved to be unconditionally stable and convergent with first-order of accuracy in time and second order of accuracy in space. Fast implementations of the proposed methods are presented by the sum-of-exponentials (SOE) approximation for the kernel t− 2+α on the interval [τ,T], where 1 < α < 2. Finally, numerical experiments are carried out to illustrate the theoretical results of our direct schemes and demonstrate their powerful computational performances.
Similar content being viewed by others
References
Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algor. 75, 173–211 (2017)
Agrawal, O. P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)
Arshad, S., Huang, J. F., Khaliq, A. Q. M., Tang, Y. F.: Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative. J. Comput. Phys. 350, 1–15 (2017)
Becker-Kern, P., Meerschaert, M. M., Scheffler, H. P.: Limit theorem for continuous-time random walks with two time scales. J. Appl. Probab. 41, 455–466 (2004)
Bhrawya, A. H., Doha, E. H., Baleanu, D., Ezz-Eldien, S. S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)
Chen, A., Li, C. P.: Numerical solution of fractional diffusion-wave equation. Numer. Func. Anal. Opt. 37(1), 19–39 (2016)
Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)
Chen, H. B., Xu, D., Peng, Y. L.: A second order BDF alternating direction implicit difference scheme for the two-dimensional fractional evolution equation. Appl. Math. Model. 41, 54–67 (2017)
Dehghan, M., Abbaszadeh, M.: Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis. Appl. Numer. Math. 119, 51–66 (2017)
Diethelm, K.: The analysis of fractional differential equations. Springer, Berlin (2010)
Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Anal. 40(2), 241–266 (2000)
Fairweather, G., Yang, X. H., Xu, D., Zhang, H. X.: An ADI Crank-Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation. J. Sci. Comput. 65, 1217–1239 (2015)
Huang, J. F., Tang, Y. F., Vázquez, L., Yang, J. Y.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algor. 64, 707–720 (2013)
Jiang, S. D., Zhang, J. W., Zhang, Q., Zhang, Z. M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)
Jin, B. T., Li, B. Y., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)
Koeller, R. C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229–307 (1984)
Li, C. P., Zhao, Z. G., Chen, Y. Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)
Li, C. P., Zeng, F. H.: Numerical methods for fractional calculus. Chapman and Hall/CRC, Boca Raton (2015)
Li, L. M., Xu, D.: Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation. J. Comput. Phys. 236, 157–168 (2013)
Liao, H. L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)
Liao, H. L., Yan, Y. G., Zhang, J. W.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)
Lodge, A. S., Renardy, M., Nohel, J. A.: Viscoelasticity and rheology. Academic Press, New York (1985)
Lopze-Marcos, J. C.: A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 27(1), 20–31 (1990)
Lubich, C.H.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)
Lubich, C. h., Sloan, I. H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1–17 (1996)
Luchko, Y., Mainardi, F.: Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation. Cent. Eur. J. Phys. 11, 666–675 (2013)
Lyu, P., Vong, S.: A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation. J. Sci. Comput. 80, 1607–1628 (2019)
Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996)
Metzler, R., Nonnenmacher, T. F.: Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys. 284, 67–90 (2002)
Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34 (4), 1426–1446 (2014)
Stynes, M., O’Riordan, E., Gracia, J. L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)
Sun, Z. Z., Wu, X. N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)
Sun, Z. Z.: The method of order reduction and its application to the numerical solutions of partial differential equations. Science Press, Beijing (2009)
Tang, T.: A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 11, 309–319 (1993)
Wang, Y. M., Wang, T.: A compact locally one-dimensional method for fractional diffusion-wave equations. J. Appl. Math. Comput. 49, 41–67 (2015)
Wang, Z. B., Vong, S.: A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation. Int. J. Comput. Math. 92(5), 970–979 (2014)
Yan, Y. G., Sun, Z. Z., Zhang, J. W.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)
Yang, J. Y., Huang, J. F., Liang, D. M., Tang, Y. F.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38(14), 3652–3661 (2014)
Yang, Z., Wang, J., Li, Y., Nie, Y.: Effective numerical treatment of sub-diffusion equation with non-smooth solution. Int. J. Comput. Math. 95(6), 1394–1407 (2018)
Yuste, S.B., Quintana-Murillo, J.: A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183(12), 2594–2600 (2012)
Zeng, F. H.: Second-order stable finite difference schemes for the time-fractional diffusion-wave equation. J. Sci. Comput. 65, 411–430 (2015)
Zhang, Y. N., Sun, Z. Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)
Funding
This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 11701502 and 11426141).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Huang, J., Yang, D. & Jay, L.O. Efficient methods for nonlinear time fractional diffusion-wave equations and their fast implementations. Numer Algor 85, 375–397 (2020). https://doi.org/10.1007/s11075-019-00817-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00817-4
Keywords
- Time fractional diffusion-wave equations
- Nonlinear system
- Finite difference schemes
- Stability
- Convergence
- Fast implementations