Abel, U., Heilmann, M.: The complete asymptotic expansion for Bernstein-Durrmeyer operators with jacobi weights. Mediterr. J. Math. 1, 487–499 (2004)
MathSciNet
Article
Google Scholar
Acu, A.M., Rasa, I.: New estimates for the differences of positive linear operators. Numer. Algorithm. 73(3), 775–789 (2016)
MathSciNet
Article
Google Scholar
Adell, J.A., Lekuona, A.: Binomial convolution and transformations of Appell polynomials. J. Math. Anal Appl. 456(1), 16–33 (2017)
MathSciNet
Article
Google Scholar
Adell, J.A., Lekuona, A.: A probabilistic generalization of the Stirling numbers of the second kind. J. Number Theory 194, 335–355 (2019)
MathSciNet
Article
Google Scholar
Adell, J.A., Lekuona, A.: Explicit expressions for a certain class of Apell polynomials. A probabilistic approach, submitted for publication, arXiv:http://arXiv.org/abs/1711.02603v1[math.NT]
Aral, A., Inoan, D., Raşa, I.: On differences of linear positive operators. Anal. Math. Phys. https://doi.org/10.1007/s13324-018-0227-7 (2018)
Berens, H., Xu, Y.: On Bernstein-Durrmeyer Polynomials with Jacobi Weights. In: Chui, C.K. (ed.) Approximation Theory and Functional Analysis, pp 25–46. Academic Press, Boston (1991)
Berens, H., Xu, Y.: On Bernstein-Durrmeyer polynomials with Jacobi weights: the cases p = 1 and p = 1. In: Baron, S., Leviatan, D. (eds.) Approximation, Interpolation and Summation (Israel Math. Conf. Proc., 4), pp 51–62. Bar-Ilan University, Ramat Gan (1991)
Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Commun. Soc. Math Kharkov 13, 1–2 (1913)
Google Scholar
Beutel, L., Gonska, H., Kacsó, D., Tachev, G.: Variation-diminishing splines revised. In: Trâmbiţaş, R. (ed.) Proc. Int. Sympos. on Numerical Analysis and Approximation Theory, pp 54–75. Presa Universitară Clujeană, Cluj-Napoca (2002)
Durrmeyer, J.L.: Une formule d’inversion de la transforme de Laplace: applications a la theorie des moments. These de 3e cycle, Paris (1967)
Gonska, H., Piţul, P., Raşa, I.: On differences of positive linear operators, Carpathian. J. Math. 22(1–2), 65–78 (2006)
MathSciNet
MATH
Google Scholar
Gonska, H., Piţul, P., Raşa, I.: On Peano’s form of the Taylor remainder, Voronovskaja’s theorem and the commutator of positive linear operators. In: Numerical Analysis and Approximation Theory (Proc. Int. Conf. Cluj-Napoca 2006; ed. by O. Agratini and P. Blaga), pp. 55–80. Cluj-Napoca, Casa Cărţii de Ştiinţă (2006)
Gonska, H., Raşa, I.: Differences of positive linear operators and the second order modulus. Carpathian J. Math. 24(3), 332–340 (2008)
MATH
Google Scholar
Goodman, T.N.T., Sharma, A.: A modified Bernstein-Schoenberg operator, Proc. of the Conference on Constructive Theory of Functions, Varna 1987 (ed. by Bl. Sendov et al.). Sofia: Publ. House Bulg. Acad. of Sci., pp. 166–173 (1988)
Kantorovich, L.V.: Sur certains developpements suivant les polynômes de la forme de S. Bernstein I, II. Dokl. Akad. Nauk. SSSR 563-568, 595–600 (1930)
MATH
Google Scholar
Lupaş, A.: Die Folge Der Betaoperatoren. Dissertation, Universität Stuttgart (1972)
Lupaş, A.: The approximation by means of some linear positive operators. In: Müller, M.W. et al. (eds.) Approximation Theory, pp 201–227. Akademie-Verlag, Berlin (1995)
Păltănea, R.: Sur un opérateur polynomial defini sur l’ensemble des fonctions intégrables. Babes-Bolyai Univ. Fac. Math. Comput. Sci. Res. Semin. 2, 101–106 (1983)
MATH
Google Scholar
Raşa, I.: Discrete operators associated with certain integral operators. Stud. Univ. Babeş Bolyai Math. 56(2), 537–544 (2011)
MathSciNet
Google Scholar
Raşa, I., Stănilă, E.: On some operators linking the Bernstein and the genuine Bernstein-Durrmeyer operators. J. Appl. Funct. Anal. 9, 369–378 (2014)
MathSciNet
MATH
Google Scholar
Tenberg, R.: Linearkombinationen Von Bernstein-Durrmeyer-Polynomen Bzgl. Jacobi-Gewichtsfunktionen, Diplomarbeit, Univ, Dortmund, Fachbereich Mathematik (1994)