Skip to main content
Log in

Multirate finite step methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Many physical phenomena contain different scales. These phenomena can be modeled using partial differential equations (PDEs). Often, these PDEs can be split additively in a fast and a slow part. We extend the multirate infinitesimal steps methods (MIS) to multirate finite step methods (MFS). Both methods resolve the fast scale with an auxiliary differential equation with a fixed slow part. The order conditions of the MIS are derived under the assumption of an exactly resolved fast scale. In contrast, the MFS methods take numerical error of the (numerical) fast , solution into account. We introduce the MFS methods and derive their order conditions for different fast scale integrators. Finally, we give some numerical experiments and compare their stability areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bremicker-Trübelhorn, S., Ortleb, S.: On multirate GARK schemes with adaptive micro step sizes for fluid–structure interaction: Order conditions and preservation of the geometric conservation law. Aerospace 4(1), 8 (2017). https://doi.org/10.3390/aerospace4010008

    Article  Google Scholar 

  2. Kennedy Christopher, A, Carpenter Mark, H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. NASA (2001)

  3. Durran, D.R.: Numerical methods for wave equations in geophysical fluid dynamics. Springer, New York (1999). ISBN 0387983767

    Book  MATH  Google Scholar 

  4. Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT Numer. Math. 24(4), 484–502 (1984). https://doi.org/10.1007/BF01934907

    Article  MathSciNet  MATH  Google Scholar 

  5. Günther, M., Sandu, A.: Multirate generalized additive Runge Kutta methods. Numer. Math. 133(3), 497–524 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Knoth, O., Wensch, J.: Generalized split-explicit Runge–Kutta methods for the compressible euler equations. Mon. Weather. Rev. 142(5), 2067–2081 (2014). https://doi.org/10.1175/MWR-D-13-00068.1

    Article  Google Scholar 

  7. LeVeque, R.J.: Fvm for hyperbolic problems (2002)

  8. Sandu, A., Günther, M.: A generalized-structure approach to additive Runge–Kutta methods. SIAM J. Numer. Anal. 53(1), 17–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for stiff ordinary differential equations. BIT Numer. Math. 47, 137–155 (2007). ISSN 0006-3835

    Article  MathSciNet  MATH  Google Scholar 

  10. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1), 85–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y. ISSN 1436-4646

    Article  MathSciNet  MATH  Google Scholar 

  12. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. 1, Nonstiff Problems. Springer, Berlin (2009). [u.a.] :, 2., rev. ed., 1. softcover printing edition. ISBN 9783642051630

    MATH  Google Scholar 

  13. Wensch, J., Knoth, O., Galant, A.: Multirate infinitesimal step methods for atmospheric flow simulation. BIT Numer. Math. 49(2), 449–473 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wicker, L.J., Skamarock, W.C.: Time-splitting methods for elastic models using forward time schemes. Mon. Weather. Rev. 130(8), 2088–2097 (2002)

    Article  Google Scholar 

Download references

Funding

This work was funded by the German Research Foundation under the grant CRC/96.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Naumann.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumann, A., Wensch, J. Multirate finite step methods. Numer Algor 81, 1547–1571 (2019). https://doi.org/10.1007/s11075-019-00763-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00763-1

Keywords

Mathematics Subject Classification (2010)

Navigation