Skip to main content

Conservative Local Discontinuous Galerkin method for the fractional Klein-Gordon-Schrödinger system with generalized Yukawa interaction

Abstract

The formulation of the Local Discontinuous Galerkin (LDG) method applied to the space fractional Klein-Gordon-Schrödinger system with generalized interaction is presented. By considering its primal formulation and taking advantage of the symmetry of the bilinear form associated to the discretization of the Riesz differential operator, conservation of discrete analogues of the mass and the energy can be demonstrated for the semi-discrete problem and for the fully discrete problem using, as time marching scheme, a combination of the modified Crank-Nicolson method for the fractional nonlinear Schrödinger equation and the Newmark method for the nonlinear Klein-Gordon equation. Boundedness of the numerical solution in the L2 norm is derived from the conservation properties of the fully discrete method. A series of numerical experiments with high order approximations illustrates our conservation results and shows that optimal rates of convergence can be also achieved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Aboelenen, T.: A high-order nodal Discontinuous Galerkin method for nonlinear fractional Schrödinger type equations. Commun. Nonlinear Sci. Numer. Simul. 54, 428–452 (2018)

    MathSciNet  Google Scholar 

  2. 2.

    Ardila, A.: Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity. Nonlinear Anal. 155, 52–64 (2017)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Arnold, D., Brezzi, F., Cockburn, B., Marini, L.: Unified analysis of Discontinuous Galerkin methods for elliptic problems. SIAM J. Num. Anal. 39(5), 1749–1779 (2002)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Baccouch, M.: A local discontinuous GAlerkin method for the second-order wave equation. Comput. Methods Appl. Mech. Engrg. 209-212, 129–143 (2012)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Bao, W., Yang, L.: Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations. J. Comput. Phys. 225(2), 1863–1893 (2007)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Castillo, P.: Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci. Comput. 24(2), 524–547 (2002)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the Local Discontinuous Galerkin method for elliptic problems. SIAM J. Num. Anal. 38(5), 1676–1706 (2000)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Castillo, P., Gómez, S.: On the conservation of fractional nonlinear Schrödinger’s invariants by the Local Discontinuous Galerkin method. J. Sci. Comput. 77(3), 1444–1467 (2018)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Castillo, P., Sequeira, F.: Computational aspects of the Local Discontinuous Galerkin method on unstructured grids in three dimensions. Math. Comput. Model. 57(9), 2279–2288 (2013)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Cockburn, B., Dong, B.: An analysis of the minimal dissipation Local Discontinuous Galerkin method for convection diffusion problems. SIAM J. Sci. Comput. 32, 233–262 (2007)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the Local Discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Num. Anal. 39(1), 264–285 (2001)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Cockburn, B., Shu, C.W.: The Local Discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Num. Anal. 35(6), 2440–2463 (1998)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    D’Avenia, P., Squassina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Meth. Appl. Sci. 38(18), 5207–5216 (2015)

    MATH  Google Scholar 

  14. 14.

    Dehghan, M., Taleei, A.: Numerical solution of the Yukawa-coupled Klein-Gordon-Schrödinger equations via a Chebyshev pseudospectral multidomain method. Appl. Math. Model. 36(6), 2340–2349 (2012)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Delfour, M., Fortin, M., Payré, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44(2), 277–288 (1981)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Felmer, P., Quass, A., Tan, J.: Positive solutions of the nonlinear Schröxdinger equation with the fractional Laplacian. Proc. R. Soc. Edinburgh Sect. A: Math. 142 (6), 1237–1262 (2012)

    Google Scholar 

  17. 17.

    Fukuda, I., Tsutsumi, M.: On coupled Klein-Gordon-Schrödinger equations, I. Bull. Sci. Engrg. Lab. Waseda Univ. 69, 51–62 (1975)

    MATH  Google Scholar 

  18. 18.

    Fukuda, I., Tsutsumi, M.: On coupled Klein-Gordon-Schrödinger equations, II. J. Math. Anal. and Appl. 66, 358–378 (1978)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear S,chrödinger equation. App Math. Comp. 204(1), 468–477 (2008)

    MATH  Google Scholar 

  20. 20.

    Guo, L., discontinuous, Y. X. u.: Energy conserving local Galerkin methods for the nonlinear Schrödinger equation with wave operator. J. Sci. Comput. 65(2), 622–647 (2015)

    MathSciNet  Google Scholar 

  21. 21.

    Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47(8), 082104 (2006)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Hong, J., Ji, L., Liu, Z.: Optimal error estimate of conservative local discontinuous Galerkin method for nonlinear Schrödinger equation. Appl. Numer Math. 127, 164–178 (2018)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Huang, C., Guo, G., Huang, D., Li, Q.: Global well-posedness of the fractional Klein-Gordon-Schrödinger system with rough initial data. Sci. China Math. 59(7), 1345–1366 (2016)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Kong, L., Zhang, J., Cao, Y., Duan, Y., Huang, H.: Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrödinger equations. Comput. Phys. Commun. 181(8), 1369–1377 (2010)

    MATH  Google Scholar 

  25. 25.

    Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62(3), 3135 (2000)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4), 298–305 (2000)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(5), 056108 (2002)

    MathSciNet  Google Scholar 

  28. 28.

    Liang, H.: Linearly implicit conservative schemes for long-term numerical simulation of Klein-Gordon-Schrödinger equations. Appl. Math. Comput. 238, 475–484 (2014)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Pan, X., Zhang, L.: High-order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein-Gordon equation. Nonlinear Anal. Theory Methods Appl. 92, 108–118 (2013)

    MATH  Google Scholar 

  30. 30.

    Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comp. 43(167), 21–27 (1984)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Sanz-Serna, J.M., Verwer, J.G.: Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6(1), 25–42 (1986)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Strauss, W., Vazquez, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28(2), 271–278 (1978)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Wang, J., Xiao, A.: An efficient conservative difference scheme for fractional Klein-Gordon-Schrödinger equations. Appl. Math. Comput. 320, 691–709 (2018)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Wang, J., Xiao, A., Wang, C.: A conservative difference scheme for space fractional Klein-Gordon-Schrödinger equations with a high-degree Yukawa interation. East Asian J. Appl. Math. 8(4), 715–745 (2018)

    MathSciNet  Google Scholar 

  35. 35.

    Wang, T.: Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation. J. Math. Anal. Appl. 412(1), 155–167 (2014)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Xanthopoulos, P., Zouraris, G.: A linearly explicit finite different method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete Contin. Dyn. Syst. Ser. B 10, 239–263 (2008)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Xia, Y., Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the generalized Zakharov system. J. Comput. Phys. 229(4), 1238–1259 (2010)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Xiang, X.: Spectral method for solving the system of equations of Klein-Gordon-Schrödinger field. J. Comput. Appl. Math. 21, 161–171 (1988)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Xing, Y., Chou, C.S., Shu, C.W.: Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Probl. Imaging 7(3), 967–986 (2013)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Xu, Y., Shu, C.W.: Local Discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205(1), 72–97 (2005)

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Zhang, H., Hu, Q.: Existence of the global solution for fractional logarithmic Schrödinger equation Comp. & Math with Applic. (2017)

  42. 42.

    Zhang, L.: Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space dimension. Appl. Math. Comput. 163(1), 343–355 (2005)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Zhou, X., Zhang, L.: A conservative compact difference scheme for the Zakharov equations in one space dimension. Int J. of Comp. Math. 95(2), 279–302 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We kindly thank the anonymous reviewers for their valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Castillo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castillo, P., Gómez, S. Conservative Local Discontinuous Galerkin method for the fractional Klein-Gordon-Schrödinger system with generalized Yukawa interaction. Numer Algor 84, 407–425 (2020). https://doi.org/10.1007/s11075-019-00761-3

Download citation

Keywords

  • Fractional Klein-Gordon-Schrödinger system
  • Local Discontinuous Galerkin (LDG)
  • Mass and energy conservation

Mathematics Subject Classification (2010)

  • 65M12
  • 65M20
  • 65M60