Skip to main content
Log in

Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper considers the inverse problem for identifying the initial value problem of a space-time fractional diffusion wave equation. In general, this problem is ill-posed and the Landweber iterative regularization method is used to solve this problem. The error estimates between the exact solution and the regularized solution are given under the a priori parameter choice rule and the a posteriori parameter choice rule, respectively. In order to verify the validity and stability of the used method, numerical examples of two different dimensional cases with experimental data are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. De Staelen, R.H., Hendy, A.S.: Numerically pricing double barrier options in a time-fractional Black-Scholes model. Comput. Math. Appl. 74(6), 1166–1175 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Henry, B.I., Langlands, T.A., Wearne, S.L.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100(12), 128–103 (2008)

    Article  Google Scholar 

  3. Magin, R., Feng, X., Baleanu, D.: Solving the fractional order Bloch equation. Concept. Magn. Reson. A. 34(1), 16–23 (2009)

    Article  Google Scholar 

  4. Hilfer, R.: On fractional diffusion and continuous time random walks. Physica A 329(1), 35–40 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W., Ye, L.J., Sun, H.G.: Fractional diffusion equations by the kansa method. Comput. Math. Appl. 59, 1014–1620 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Wei, T., Zhang, Z.Q.: Stable numerical solution to a Cauchy problem for a time fractional diffusion eqution. Eng. Anal. Bound. Elem. 40, 128–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wei, T., Sun, L.L., Li, Y.S.: Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation. Appl. Math. Lett. 61, 108–113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang, F., Sun, Y.R., Li, X.X., et al.: The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain[J]. Numer. Algorithms 224, 1–17 (2018)

    Google Scholar 

  9. Tuan, N.H., Le, D.L., Nguyen, V.T.: Regularization of an inverse source problem for a time fractional diffusion equation. Appl. Math. Model. 40, 8244–8264 (2016)

  10. Šišková, K., Slodička, M.: Recognition of a time-dependent source in a time-fractional wave equation. Appl. Numer. Math. 121, 1–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ismailov, M.I., Cicek, M.: Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Model. 40(7), 4891–4899 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, F., Fu, C.L.: The quasi-reversibility regularization method for identifying the unknown source for time-fractional diffusion equation. Appl. Math. Model. 39, 1500–1512 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, F., Fu, C.L., Li, X.X.: A mollification regularization method for unknown source in time-fractional diffusion equation. Int. J. Comput. Math. 91(7), 1516–1534 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, F., Fu, C.L., Li, X.X.: The inverse source problem for time fractional diffusion equation: stability analysis and regularization. Inverse Probl. Sci. Eng. 23 (6), 969–996 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, F., Fu, C.L., Li, X.X.: Identifying an unknown source in space-fractional diffusion equation. Acta Math. Sci. 34(4), 1012–1024 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, F., Ren, Y.P., Li, X.X.: The quasi-reversibility method for a final value problem of the time-fractional diffusion equation with inhomogeneous source. Math. Method. Appl. Sci. 41(5), 1774–1795 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, F., Zhang, P., Li, X.X.: The truncation method for the Cauchy problem of the inhomogeneous Helmholtz equation. Appl. Anal. 98(5), 991–1004 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, F., Fu, C.L., Li, X.X.: The method of simplified Tikhonov regularization for a time-fractional inverse diffusion problem. Math. Comput. Simul. 144, 219–234 (2018)

    Article  MathSciNet  Google Scholar 

  19. Huang, J.F., Tang, Y.F., Vzquez, L., Yang, J.Y.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64 (4), 707–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dai, H.Y., Wei, L.L., Zhang, X.D.: Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the fractional diffusion-wave equation. Numer. Algorithms 67, 845–862 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, A., Li, C.P.: Numerical solution of fractional diffusion-wave equation. Numer. Funct. Anal. Optim. 37, 19–39 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, 3377–3388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam. 29, 145–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hendy, A.S., De Staelen, R.H., Pimenov, V.G.: A semi-linear delayed diffusion-wave system with distributed order in time. Numer. Algorithms 3, 885–903 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Pimenov, V.G., Hendy, A.S., De Staelen, R.H.: On a class of non-linear delay distributed order fractional diffusion equations. J. Comput. Appl. Math. 318, 433–443 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kian, Y., Oksanen, L., Soccorsi, E., Yamamoto, M.: Global uniqueness in an inverse problem for time fractional diffusion equations. J. Differ. Equations 264 (2), 1146–1170 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Siskova, K., Slodicka, M.: Recognition of a time-dependent source in a time-fractional wave equation. Appl. Numer. Math. 121, 1–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wei, T., Zhang, Y.: The backward problem for a time-fractional diffusion-wave equation in a bounded domain. Comput. Math. Appl. 75, 3632–3648 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jia, J.X., Li, K.: Maximum principles for a time-space fractional diffusion equation. Appl. Math. Lett. 62, 23–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tatar, S., Tinaztepe, R., Ulusoy, S.: Determination of an unknown source term in a space-time fractional diffusion equation. J. Frac. Cal. Appl. 6(1), 83–90 (2015)

    MathSciNet  Google Scholar 

  32. Tatar, S., Tinaztepe, R., Ulusoy, S.: Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation. Appl. Anal. 95(1), 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives fractional differential equations, to methods of their solution an some of their applications. Academic Press Inc, San Diego (1999)

    MATH  Google Scholar 

  34. Scherzer, O.: Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems. J. Math. Anal. Appl. 194, 911–933 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, L.J., Han, X., Liu, J., Chen, J.J.: An improved iteration regularization method and application to reconstruction of dynamic loads on a plate. J. Comput. Appl. Math. 235(14), 4083–4094 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, F., Liu, X., Li, X.X.: Landweber iterative regularization method for identifying the unknown source of the modified Helmholtz equation. Bound. Value. Probl. 2017, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, F., Ren, Y.P., Li, X.X.: Landweber iteration regularization method for identifying unknown source on a columnar symmetric domain. Inverse. Probl. Sci. En. 26(8), 1109–1129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, Z., Yang, G.Y., He, N., Tan, X.Y.: Landweber iterative algorithm based on regularization in electromagnetic tomography for multiphase flow measurement. Flow Meas. Instrum. 27(10), 53–58 (2012)

    Article  Google Scholar 

  39. Tatar, S., Ulusoy, S.: An inverse source problem for a one-dinmensional space-time fractional diffusion equation. Appl. Anal. 11, 2233–22444 (2015)

    Article  MATH  Google Scholar 

  40. Lopushansky, A., Lopushanska, H.: Inverse source cauchy problem for a time fractional diffusion-wave equation with distributions. Electron. J. Differ. Eq. 182, 1–14 (2017)

    MathSciNet  Google Scholar 

  41. Kilbas, A.A., Slodicka, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhang, Y. & Li, XX. Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation. Numer Algor 83, 1509–1530 (2020). https://doi.org/10.1007/s11075-019-00734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00734-6

Keywords

Navigation