Skip to main content
Log in

Efficient preconditioners for Radau-IIA time discretization of space fractional diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is concerned with the construction of efficient preconditioners for systems arising from implicit Runge-Kutta time discretization methods for one-dimensional and two-dimensional space fractional diffusion equations. We consider the third-order, two-stage Radau-IIA method, which leads to a coupled 2 × 2 block system. Our approach is based on a Schur complement formulation for the unknown at the second stage. We present an approximate factorization of the Schur complement and derive the eigenvalue bounds of the preconditioned system. The components of the approximate factorization have the same structure as the system derived from implicit Euler discretization of the problem. Therefore, we reuse the available high performance of implicit Euler discretization preconditioners as the building block for our preconditioners. Several numerical experiments are presented to show the effectiveness of our approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Axelsson, O.: A class of A-stable methods. BIT 9, 185–199 (1969)

    MathSciNet  MATH  Google Scholar 

  2. Axelsson, O.: On the efficiency of a class of A-stable methods. BIT 14, 279–287 (1974)

    MathSciNet  MATH  Google Scholar 

  3. Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algor. 66, 811–841 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Axelsson, O., Kucherov, A.: Real valued iterative methods for solving complex symmetic linear systems. Numer. Linear. Algebr. Appl. 7, 197–218 (2000)

    MATH  Google Scholar 

  5. Axelsson, O., Blaheta, R., Kohut, R.: Preconditioning methods for high-order strongly stable time integration methods with an application for a DAE problem. Numer. Linear Algebra Appl.22, 930–949 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Bai, Z.-Z., Lu, K.-Y., Pan, J.-Y.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24 (e2093), 1–15 (2017). https://doi.org/10.1002/nla.2093

    Article  MathSciNet  MATH  Google Scholar 

  7. Blue, J.L., Gummel, H.K.: Rational approximations to matrix exponential for systems of stiff differential equations. J. Comput. Phys. 5, 70–83 (1970)

    MathSciNet  MATH  Google Scholar 

  8. Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34, A2145–A2172 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Butcher, J.C.: Implicit Runge-Kutta processes. Math. Comput. 18, 50–64 (1964)

    MathSciNet  MATH  Google Scholar 

  10. Chen, H.: A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods. BIT 54, 607–621 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Chen, H.: Generalized Kronecker product splitting iteration for the solution of implicit Runge-Kutta and boundary value methods. Numer Linear Algebra Appl 22, 357–370 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Chen, H.: Kronecker product splitting preconditioners for implicit Runge-Kutta discretizations of viscous wave equations. Appl. Math. Model. 40, 4429–4440 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Chen, H.: A splitting preconditioner for implicit Runge-Kutta discretizations of a partial differential-algebraic equation. Numer. Algor. 73, 1037–1054 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Chen, H., Lv, W., Zhang, T.-T.: A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 360, 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Chen, H., Zhang, T.-T., Lv, W.: Block preconditioning strategies for time-space fractional diffusion equations. Appl. Math. Comput. 337, 41–53 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Chen, H., Wang, X.-L., Li, X.-L.: A note on efficient preconditioner of implicit Runge-Kutta methods with application to fractional diffusion equations. Appl. Math. Comput. 351, 116–123 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Chen, H., Lv, W.: Kronecker product based structure preserving preconditioner for three-dimensional space-fractional diffusion equations. Int. J. Comput. Math. https://doi.org/10.1080/00207160.2019.1581177 (2019)

  18. Chen, M.-H., Deng, W.-H., Wu, Y.-J.: Superlinear convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equations. Appl. Numer. Math. 70, 22–41 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Chen, M.-H., Deng, W.-H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM. J. Numer. Anal. 52, 1418–1438 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Chou, L.-K., Lei, S.-L.: Fast ADI method for high dimensional fractional diffusion equations in conservative form with preconditioned strategy. Comput. Math. Appl. 73, 385–403 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Gohberg, I., Olshevsky, V.: Circulants, displacements and decompositions of matrices. Integral Equ. Oper. Theory. 15, 730–743 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Guo, B.-L., Pu, X.-K., Huang, F.-H.: Fractional partial differential equations and their numerical solutions world scientific (2015)

  24. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential Algebraic Problems. Springer, Berlin (1996)

    MATH  Google Scholar 

  25. Jay, L.O., Braconnier, T.: A parallelizable preconditioner for the iterative solution of implicit Runge-Kutta type methods. J. Comput. Appl. Math. 111, 63–76 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Jin, X.-Q., Lin, F.-R., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18, 469–488 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Lei, S.-L., Chen, X., Zhang, X.-H.: Multilevel circulant preconditioner for high-dimensional fractional diffusion equations. EAJAM. 6, 109–130 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Lei, S.-L., Huang, Y.-C.: Fast algorithms for high-order numerical methods for space-fractional diffusion equations. Int. J. Comput. Math. 94, 1062–1078 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Li, D.-F., Zhang, C.-J., Ruan, M.-H.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40, 6069–6081 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Li, D.-F., Zhang, J.-W.: Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain. J. Comput. Phys. 322, 415–428 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Li, D.-F., Liao, H.-L., Sun, W.-W., Wang, J.-L., Zhang, J.W.: Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)

    MathSciNet  Google Scholar 

  34. Li, D.-F., Wang, J.-L., Zhang, J.-W.: Unconditionally covergent L1-Galerkin FEMs for nonlinear time-fractional schrödinger equations. SIAM J. Sci. Comput. 39, A3067–A3088 (2017)

    MATH  Google Scholar 

  35. Lin, R.-R., Yang, S.-W., Jin, X.-Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Lin, X.-L., Ng, M.K., Sun, H.-W.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38, 1580–1614 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Lin, X.-L., Ng, M.K., Sun, H.-W.: A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Lin, X.-L., Ng, M.K., Sun, H.-W.: Efficient preconditioner of one-sided space fractional diffusion equation. BIT 58, 729–748 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Mardal, K.A., Nilssen, T.K., Staff, G.A.: Order optimal preconditioners for implicit Runge-Kutta schemes applied to parabolic PDEs. SIAM J. Sci. Comput. 29, 361–375 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equation. J. Comput. Appl. Math. 172, 65–77 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Moghaderi, H., Dehghan, M., Donatelli, M., Mazza, M.: Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 350, 992–1011 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  44. Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, 2698–2719 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Pang, H., Sun, H. -W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Podlubny, I.: Fractional Differential Equations. Math. Sci Engrg, vol. 198. Academic Press, San Diego (1999)

    Google Scholar 

  47. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

  48. Simmons, A., Yang, Q. -Q., Moroney, T.: A preconditioned numerical solver for stiff nonlinear reaction-diffusion equations with fractional Laplacians that avoids dense matrices. J. Comput. Phys. 287, 254–268 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximation for solving space-fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Wang, H., Wang, K., Sircar, T.: A direct \(\mathcal {O}(n\log ^{2}n)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of the paper.

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No.11301575), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-M201800501, No. KJQN201800 506, No. KJQN201800537), the Natural Science Foundation Project of CQ CSTC (No.cstc2018jcyjAX0113 and No.cstc2018jcyjAX0794), and the Talent Project of Chongqing Normal University (Grant No. 02030307-0054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xu, D. Efficient preconditioners for Radau-IIA time discretization of space fractional diffusion equations. Numer Algor 83, 1349–1372 (2020). https://doi.org/10.1007/s11075-019-00728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00728-4

Keywords

Mathematics Subject Classification (2010)

Navigation