Symbolic-numeric integration of rational functions

  • Robert H. C. MoirEmail author
  • Robert M. Corless
  • Marc Moreno Maza
  • Ning Xie
Original Paper


We consider the problem of symbolic-numeric integration of symbolic functions, focusing on rational functions. Using a hybrid method allows the reliable yet efficient computation of symbolic antiderivatives while avoiding issues of ill-conditioning to which numerical methods are susceptible. We propose two alternative methods for exact input that compute the rational part of the integral using Hermite reduction and then compute the transcendental part two different ways using a combination of exact integration and efficient numerical computation of roots. The symbolic computation is done within bpas, or Basic Polynomial Algebra Subprograms, which is a highly optimized environment for polynomial computation on parallel architectures, while the numerical computation is done using the highly optimized multiprecision rootfinding package MPSolve. We provide for both algorithms computable expressions for the first-order term of a structured forward and backward error and show how, away from singularities, tolerance proportionality is achieved by adjusting the precision of the rootfinding tasks.


Symbolic integration Symbolic-numeric algorithms Rational functions 



  1. 1.
    Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision algorithm. J. Comput. Appl. Math. 272, 276–292 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bronstein, M.: Symbolic Integration, vol. 3. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bronstein, M.: Symbolic integration tutorial. Accessed: 2019-04-26 (1998)
  4. 4.
    Buchberger, B., Rüdiger, G.K.L.: Algebraic Simplification, pp 11–43. Springer, Wien–New York (1982)Google Scholar
  5. 5.
    Fateman, R.: Revisiting numeric/symbolic indefinite integration of rational functions, and extensions. Accessed: 2019-04-26 (2008)
  6. 6.
    Kahan, W.M.: Conserving confluence curbs ill-condition. Technical report, DTIC Document (1972)Google Scholar
  7. 7.
    Kahan, W.M.: Handheld calculator evaluates integrals. Hewlett-Packard Journal 31(8), 23–32 (1980)MathSciNetGoogle Scholar
  8. 8.
    Noda, M.-T., Miyahiro, E.: On the symbolic/numeric hybrid integration. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, p 304. ACM (1990)Google Scholar
  9. 9.
    Noda, M.-T., Miyahiro, E.: A hybrid approach for the integration of a rational function. J. Comput. Appl. Math. 40(3), 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rioboo, R.: Proceedings of the 1992 International Symposium on Symbolic and Algebraic Computation, ISSAC ’92, Berkeley, CA, USA, July 27–29, 1992. In: Wang, P.S. (ed.) , pp 206–215. ACM (1992)Google Scholar
  11. 11.
    Rioboo, R.: Towards faster real algebraic numbers. J. Symb. Comput. 36(3–4), 513–533 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zeng, Z.: Apatools: a software toolbox for approximate polynomial algebra. In: Software for Algebraic Geometry, pp 149–167. Springer (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ontario Research Centre for Computer AlgebraUniversity of Western OntarioLondonCanada
  2. 2.Huawei Technologies CorporationMarkhamCanada

Personalised recommendations