Decomposition into subspaces preconditioning: abstract framework

Abstract

Operator preconditioning based on decomposition into subspaces has been developed in early 90’s in the works of Nepomnyaschikh, Matsokin, Oswald, Griebel, Dahmen, Kunoth, Rüde, Xu, and others, with inspiration from particular applications, e.g., to fictitious domains, additive Schwarz methods, multilevel methods etc. Our paper presents a revisited general additive splitting-based preconditioning scheme which is not connected to any particular preconditioning method. We primarily work with infinite-dimensional spaces. Motivated by the work of Faber, Manteuffel, and Parter published in 1990, we derive spectral and norm lower and upper bounds for the resulting preconditioned operator. The bounds depend on three pairs of constants which can be estimated independently in practice. We subsequently describe a nontrivial general relationship between the infinite-dimensional results and their finite-dimensional analogs valid for the Galerkin discretization. The presented abstract framework is universal and easily applicable to specific approaches, which is illustrated on several examples.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning discrete approximations of the Reissner-Mindlin plate model. RAIRO Modél. Math. Anal. Numér. 31(4), 517–557 (1997)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning in H(div) and applications. Math. Comp. 66(219), 957–984 (1997)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47, 281–354 (2010)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Atkinson, K., Han, W.: Theoretical Numerical Analysis. A Functional Analysis Framework. Texts in Applied Mathematics, 3rd edn., vol. 39. Springer, Dordrecht (2009)

  5. 5.

    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  6. 6.

    Axelsson, O., Gustafsson, I.: Iterative methods for the solution of the Navier equations of elasticity. Comput. Meth. Appl. Mech. Engrg. 15, 241–258 (1978)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Axelsson, O., Karátson, J.: Equivalent operator preconditioning for elliptic problems. Numer. Algorithms 50(3), 297–380 (2009)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Axelsson, O., Padiy, A.: On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems. SIAM J. Sci. Comput. 20, 1807–1830 (1999)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Axelsson, O., Vassilevski, P.S.: Algebraic multilevel preconditioning methods. I. Numer. Math. 56(2-3), 157–177 (1989)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Bespalov, A., Powell, C.E., Silvester, D.: Energy norm a posteriori error estimation for parametric operator equations. SIAM J. Sci. Comput. 36, A339–A363 (2014)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Blaheta, R.: Displacement decomposition–incomplete factorization preconditioning techniques for linear elasticity problems. Numerical Linear Algebra with Applications 1(2), 107–128 (1994)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Bramble, J., Pasciak, J., Xu, J.: Parallel multilevel preconditioners. Math. Comp. 55(191), 1–22 (1990)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Bramble, J.H., Pasciak, J.E., Wang, J.P., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comp. 57(195), 23–45 (1991)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)

    Google Scholar 

  15. 15.

    Conway, J.B.: A Course in Functional Analysis Graduate Texts in Mathematics, 2nd edn, vol. 96. Springer, New York (1990)

    Google Scholar 

  16. 16.

    Crowder, A., Powell, C.E.: CBS constants and their role in error estimation for stochastic Galerkin finite element methods. J. Sci. Comput. 77(2), 1030–1054 (2018)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63(3), 315–344 (1992)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. With the Assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, vol. 7. Interscience Publishers, Inc., New York (1958)

    Google Scholar 

  19. 19.

    D’Yakonov, E.G.: On an iterative method for the solution of a system of finite-difference equations. Dokl. Akad. Nauk 138, 522–526 (1961)

    Google Scholar 

  20. 20.

    D’Yakonov, E.G.: The construction of iterative methods based on the use of spectrally equivalent operators. U.S.S.R Comput. Math. and Math. Phys. 6(1), 14–46 (1966)

    MATH  Google Scholar 

  21. 21.

    Eijkhout, V., Vassilevski, P.: The role of the strengthened C.B.S.-inequality in multi-level methods. SIAM Rev. 33, 405–419 (1991)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Faber, V., Manteuffel, T.A., Parter, S.V.: On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations. Adv. Appl. Math. 11(2), 109–163 (1990)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Farhat, C., Mandel, J., Roux, F.X.: Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Engrg. 115 (3-4), 365–385 (1994)

    MathSciNet  Google Scholar 

  24. 24.

    Friedman, A.: Foundations of Modern Analysis. Dover Publications, New York (1982)

    Google Scholar 

  25. 25.

    Gander, M., Halpern, L., Santugini-Repiquet, K.: Continuous analysis of the additive Schwarz method: a stable decomposition in H1. ESAIM Mathematical Modelling and Numerical Analysis 49(3), 365–385 (2011)

    Google Scholar 

  26. 26.

    Gergelits, T., Mardal, K.A., Nielsen, B.F., Strakoš, Z.: Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator. arXiv:180903790G (2018)

  27. 27.

    Gergelits, T., Strakoš, Z.: Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations. Numer. Algorithms 65(4), 759–782 (2014)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70(2), 163–180 (1995)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Gunn, J.E.: The numerical solution of ∇⋅ au = f by a semi-explicit alternating-direction iterative technique. Numer. Math. 6, 181–184 (1964)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Gunn, J.E.: The solution of elliptic difference equations by semi-explicit iterative techniques. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2, 24–45 (1965)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Hiptmair, R.: Operator preconditioning. Comput. Math. Appl. 52(5), 699–706 (2006)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Hrnčíř, J., Strakoš, Z.: Norm and spectral equivalence in operator preconditioning. In: Preparation (2018)

  33. 33.

    Keilegavlen, E., Nordbotten, J.M.: Inexact linear solvers for control volume discretizations in porous media. Comput. Geosci. 19(1), 159–176 (2014)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Kirby, R.C.: From functional analysis to iterative methods. SIAM Rev. 52(2), 269–293 (2010)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Klawonn, A.: An optimal preconditioner for a class of saddle point problems with a penalty term. Part II: general theory. Tech. rep., 14/95. Westfälische Wilhelms-Universität Münster, Germany (1995)

    Google Scholar 

  36. 36.

    Klawonn, A.: Preconditioners for indefinite problems. Ph.D. thesis, Universität Münster (1996)

    Google Scholar 

  37. 37.

    Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis. Vol. 1. Metric and Normed Spaces. Graylock Press, Rochester, N.Y. Translated from the first Russian edition by Leo F. Boron (1957)

  38. 38.

    Kornhuber, R., Yserentant, H.: Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model Simul. 14(3), 1017–1036 (2016)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Kraus, J., Margenov, S.: Robust Algebraic Multilevel Methods and Algorithms Radon Series on Computational and Applied Mathematics, vol. 5. Walter de Gruyter GmbH & Co. KG, Berlin (2009)

    Google Scholar 

  40. 40.

    Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

    Google Scholar 

  41. 41.

    Málek, J., Strakoš, Z.: Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs SIAM Spotlights, vol. 1. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2015)

    Google Scholar 

  42. 42.

    Mardal, K.A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18, 1–40 (2011)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Matsokin, A.M., Nepomnyaschikh, S.V.: Schwarz alternating method in a subspace. Sov. Math. (Izv. vuz.) 29, 78–84 (1985)

    Google Scholar 

  44. 44.

    Napov, A., Notay, Y.: Algebraic multigrid for moderate order finite elements. SIAM J. Sci. Comput. 36(4), A1678–A1707 (2014)

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: an Introduction Studies in Applied Mechanics, vol. 3. Elsevier Scientific Publishing Co., Amsterdam (1980)

    Google Scholar 

  46. 46.

    Nepomnyaschikh, S.V.: Mesh theorems on traces, normalization of function traces and their inversion. Sov. J. Numer. Anal. Math. Modelling 6, 1–25 (1991)

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Nepomnyaschikh, S.V.: Method of splitting into subspaces for solving elliptic boundary value problems in complex-form domains. Sov. J. Numer. Anal. Math. Modelling 6, 151–168 (1991)

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Nepomnyaschikh, S.V.: Decomposition and fictitious domain methods for elliptic boundary value problems. In: Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S., Voigt, R. (eds.) 5Th Conference on Domain Decomposition Methods for PDE, pp 62–72. SIAM Publ., Philadelphia (1992)

  49. 49.

    Nielsen, B.F., Tveito, A., Hackbusch, W.: Preconditioning by inverting the Laplacian: an analysis of the eigenvalues. IMA J. Numer. Anal. 29(1), 24–42 (2009)

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Oswald, P.: On function spaces related to finite element approximation theory. Z. Anal. Anwendungen 9, 43–64 (1990)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Oswald, P.: Norm equivalencies and multilevel Schwarz preconditioning for variational problems. Forschungsergebnisse Math/92/01, Friedrich Schiller Universität Jena (1992)

  52. 52.

    Oswald, P.: Stable splittings of Sobolev spaces and fast solution of variational problems. Forschungsergebnisse Math/92/05, Friedrich Schiller Universität Jena (1992)

  53. 53.

    Oswald, P.: Multilevel Finite Element Approximation, Theory and Applications. Teubner Skripten Zur Numerik. B. G. Teubner, Stuttgart, Stuttgart (1994)

    Google Scholar 

  54. 54.

    Oswald, P.: Stable subspace splittings for Sobolev spaces and domain decomposition algorithms. In: Domain decomposition methods in scientific and engineering computing (University Park, PA, 1993), Contemp. Math., vol. 180, pp 87–98. Amer. Math. Soc., Providence (1994)

  55. 55.

    Pultarová, I.: Block and multilevel preconditioning for stochastic Galerkin problems with lognormally distributed parameters and tensor product polynomials. J. Uncertain. Quantif. 7(5), 441–462 (2017)

    MathSciNet  Google Scholar 

  56. 56.

    Rüde, U.: Mathematical and Computational Techniques for Multilevel Adaptive Methods Frontiers in Applied Mathematics, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1993)

    Google Scholar 

  57. 57.

    Sogn, J., Zulehner, W.: Schur complement preconditioners for multiple saddle point problems of block tridiagonal form with application to optimization problems. arXiv:1708.09245v1 [math.NA] (2017)

  58. 58.

    Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems, Finite and Boundary Elements. Springer science + bussiness media, LLC, New York (2008)

    Google Scholar 

  59. 59.

    Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and Theory. Springer, Berlin (2005)

    Google Scholar 

  60. 60.

    Vassilevski, P.S.: Multilevel Block Factorization Preconditioners. Matrix-based Analysis and Algorithms for Solving Finite Element Equations. Springer, New York (2008)

    Google Scholar 

  61. 61.

    Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    MathSciNet  MATH  Google Scholar 

  62. 62.

    Xu, J.: An introduction to multilevel methods. Wavelets, Multilevel Methods and Elliptic PDEs, M. Ainsworth, J. Levesley, M. Marletta, and W. Light, eds. pp 213–299 (1997)

  63. 63.

    Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert spaces. J. Am. Math. Soc. 15(3), 573–597 (2002)

    MathSciNet  MATH  Google Scholar 

  64. 64.

    Yserentant, H.: On the multilevel splitting of finite element spaces. Numer. Math. 49(4), 379–412 (1986)

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numerica 2, 285–326 (1993)

    MathSciNet  MATH  Google Scholar 

  66. 66.

    Zulehner, W.: Nonstandard norms and robust estimates for saddle point problems. SIAM. J. Matrix Anal. Appl. 32(2), 536–560 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Radim Blaheta for pointing out the separate displacement method in elasticity. The authors thank Miroslav Bulíček, Vít Dolejší, Josef Málek, Endre Süli, and Jan Zeman for their careful reading the manuscript and for many helpful suggestions and comments.

Funding

The work was supported by the Grant Agency of the Czech Republic under the contract no. 17-04150J and by the Charles University, project GA UK no. 172915.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivana Pultarová.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the Appendix, we give the proof of the following theorem.

Theorem 1

Let \({\mathcal A}:V\to V^\#\) be a linear, bounded, coercive, and self-adjoint operator. Using the standard definition of the operator norm, the boundedness constant \(C_{\mathcal A}\) and the coercivity constant \(c_{\mathcal A}\) can be expressed as

$$\begin{array}{@{}rcl@{}} C_{\mathcal A}&=&\Vert{\mathcal A}\Vert_{{\mathcal L}(V,V^\#)}= \sup\limits_{u\in V, \Vert u\Vert_{V}= 1}\langle {\mathcal A}u,u\rangle=M_{\mathcal A}, \end{array} $$
(124)
$$\begin{array}{@{}rcl@{}} c_{\mathcal A}&=&m_{\mathcal A}= \inf\limits_{v\in V, \Vert v\Vert_{V}= 1}\langle {\mathcal A}v,v\rangle= \frac{1}{\sup\limits_{f\in V^\#, \Vert f\Vert_{V^\#}= 1}\Vert {\mathcal A}^{-1}f\Vert_{V}}\\ &=&\left\{\Vert{\mathcal A}^{-1}\Vert_{{\mathcal L}(V^\#,V)}\right\}^{-1}. \end{array} $$
(125)

Proof

The equality (124) is well known. It follows from the following sequence of equalities

$$\begin{array}{@{}rcl@{}} C_{\mathcal A}&=&\Vert{\mathcal A}\Vert_{{\mathcal L}(V,V^\#)}=\Vert\tau{\mathcal A}\Vert_{{\mathcal L}(V,V)}= \sup\limits_{u\in V,\Vert u\Vert_{V}= 1}(\tau{\mathcal A}u,u)_{V}\\ &=& \sup\limits_{u\in V,\Vert u\Vert_{V}= 1}\langle{\mathcal A}u,u\rangle=M_{\mathcal A}. \end{array} $$
(126)

Here, we used the fact that for any self-adjoint operator S in a Hilbert space V

$$\begin{array}{@{}rcl@{}} \Vert S\Vert_{{\mathcal L}(V,V)}&=&\sup\limits_{z\in V, \Vert z\Vert_{V}= 1}\Vert Sz\Vert_{V}=\sup\limits_{z\in V, \Vert z\Vert_{V}= 1}(Sz,Sz)_{V}^{1/2}\\ &=& \sup\limits_{z\in V, \Vert z\Vert_{V}= 1}\vert(Sz,z)_{V}\vert; \end{array} $$
(127)

see [14, Theorem 4.10.1, p. 220], [24, Theorem 6.5.1]. The second statement (125) was published without proof in [41, Section 3.3]. Since \(c_{\mathcal A}=m_{\mathcal A}\), it remains to prove that

$$ m_{\mathcal A}=\frac{1}{\sup\limits_{f\in V^\#,\Vert f\Vert_{V^\#}= 1}\Vert{\mathcal A}^{-1}f\Vert_{V}}= \inf_{u\in V,\Vert u\Vert_{V}= 1}\Vert{\mathcal A}u\Vert_{V^\#}, $$
(128)

where the second equality results from the substitution \(f={\mathcal A}u/\Vert {\mathcal A}u\Vert _{V^\#}\), uV. Equivalently, it remains to prove that

$$ m_{\mathcal A}:=\inf_{u\in V,\Vert u\Vert_{V}= 1}(\tau{\mathcal A}u,u)_{V}=\inf_{u\in V,\Vert u\Vert_{V}= 1} \Vert \tau{\mathcal A}u\Vert_{V}. $$
(129)

Clearly \((\tau {\mathcal A}u,u)_{V}\le \Vert \tau {\mathcal A}u\Vert _{V} \Vert u\Vert _{V}\), therefore the inequality

$$m_{\mathcal A}\le \inf_{u\in V, \Vert u\Vert_{V}= 1}\Vert \tau{\mathcal A}u\Vert_{V} $$

is trivial. In order to prove the opposite inequality

$$m_{\mathcal A}\ge \inf_{u\in V, \Vert u\Vert_{V}= 1}\Vert \tau{\mathcal A}u\Vert_{V}, $$

we use the fact that \(m_{\mathcal A}\) belongs to the spectrum of \(\tau {\mathcal A}\) and therefore there exists a sequence \(\{v_{k}\}_{k = 1,2,\dots }\) in V, ∥vkV = 1, such that

$$ \lim_{k\to\infty}\Vert\tau{\mathcal A}v_{k}-m_{\mathcal A}v_{k}\Vert_{V}= 0; $$
(130)

see [24, Corollary 6.5.6]. We will finish the proof by contradiction. Assume that

$$m_{\mathcal A}<\inf_{u\in V,\Vert u\Vert_{V}= 1}\Vert \tau{\mathcal A}u\Vert_{V}-\triangle $$

for some △ > 0. Using the Cauchy-Schwarz inequality,

$$\begin{array}{@{}rcl@{}} \Vert\tau{\mathcal A}v_{k}-m_{\mathcal A}v_{k}{\Vert_{V}^{2}} &=& \Vert \tau{\mathcal A}v_{k}{\Vert_{V}^{2}}+m_{\mathcal A}^{2}-2m_{\mathcal A}(\tau{\mathcal A}v_{k},v_{k})_{V}\\ &\ge& \Vert \tau{\mathcal A}v_{k}{\Vert_{V}^{2}}+m_{\mathcal A}^{2}-2m_{\mathcal A}\Vert \tau{\mathcal A}\Vert_{V} = (\Vert\tau{\mathcal A}v_{k}\Vert_{V}-m_{\mathcal A})^{2}. \end{array} $$

Then

$$\Vert\tau{\mathcal A}v_{k}-m_{\mathcal A}v_{k}{\Vert_{V}^{2}} \ge \triangle^{2}\quad \textrm{for all} k = 1,2,\dots, $$

which gives the contradiction with (130) and completes the proof. □

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hrnčíř, J., Pultarová, I. & Strakoš, Z. Decomposition into subspaces preconditioning: abstract framework. Numer Algor 83, 57–98 (2020). https://doi.org/10.1007/s11075-019-00671-4

Download citation

Keywords

  • Operator preconditioning
  • Decomposition into infinite-dimensional subspaces
  • Stable splitting
  • Norm and spectral equivalence of operators
  • Additive Schwarz methods
  • Multilevel methods
  • Separate displacement preconditioning