A novel approach to rigid spheroid models in viscous flows using operator splitting methods


Calculating cost-effective solutions to particle dynamics in viscous flows is an important problem in many areas of industry and nature. We implement a second-order symmetric splitting method on the governing equations for a rigid spheroidal particle model with torques, drag and gravity. The method splits the operators into a vector field that is conservative and one that takes into account the forces of the fluid. Error analysis and numerical tests are performed on perturbed and stiff particle-fluid systems. For the perturbed case, the splitting method greatly improves the solution accuracy, when compared to a conventional multistep method, and the global error behaves as \(\mathcal {O}(\varepsilon h^{2})\) for roughly equal computational cost. For stiff systems, we show that the splitting method retains stability in regimes where conventional methods blow up. In addition, we show through numerical experiments that the global order is reduced from \(\mathcal {O}(h^{2}/\varepsilon )\) in the perturbed regime to \(\mathcal {O}(h)\) in the stiff regime.

This is a preview of subscription content, log in to check access.


  1. 1.

    Alfredsson, P.H., Lundell, F., Sod̈erberg, L.D.: Fluid mechanics of papermaking. Annu. Rev. Fluid Mech 43, 195–217 (2011)

    Article  MATH  Google Scholar 

  2. 2.

    Marti, I., Windhab, E.J., Fischer, P., Erni, P., Cramer, C.: Continuous flow structuring of anisotropic biopolymer particles. Adv. Colloid Interface Sci. 150, 16–26 (2009)

    Article  Google Scholar 

  3. 3.

    Prather, K.A., Moffett, R.C.: In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. PNAS 106, 72–77 (2009)

    Google Scholar 

  4. 4.

    Kessler, J.O., Pedley, T.J.: Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 13–58 (1992)

    MATH  Google Scholar 

  5. 5.

    Heymsfield, A.J.: Precipitation development in stratiform ice clouds: a microphysical and dynamical study. J. Atmos. Sci. 34, 67–81 (1977)

    Article  Google Scholar 

  6. 6.

    van Hout, R., Sabban, L.: Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol Sci. 42, 67–82 (2011)

    Google Scholar 

  7. 7.

    McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Tornberg, A., Gustavsson, K.: A numerical method for simulations of rigid fiber suspensions. J. Comput. Phys. 215, 172–196 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Shin, M., Koch, D.L.: Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143–74 (2005)

    Article  MATH  Google Scholar 

  10. 10.

    Khayat, R.E., Cox, R.G.: Inertia effects on the motion of long slender bodies. J. Fluid Mech. 209, 435–62 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Brenner, H., Cox, R.: The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17, 561–595 (1963)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Cox, R.: The steady motion of a particle of arbitrary shape at small Reynolds numbers. J. Fluid Mech. 23, 625–643 (1965)

    Article  Google Scholar 

  13. 13.

    Brenner, H.: The Stokes resistance of an arbitrary particle IV: arbitrary fields of flow. Chem. Eng. Sci. 19, 703–727 (1964)

    Article  Google Scholar 

  14. 14.

    Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London, Ser. A 102, 161–179 (1922)

    Article  MATH  Google Scholar 

  15. 15.

    Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J., Boersma, B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302 (2008)

  16. 16.

    Zhang, H., Ahmadi, G., Fan, F.G., McLaughlin, J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiphase Flow 27, 971–1009 (2001)

    Article  MATH  Google Scholar 

  17. 17.

    Challabotla, N.R., Nilsen, C., Andersson, H.I.: On rotational dynamics of inertial disks in creeping shear flow. Phys. Lett. A. 379, 157–162 (2015)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Voth, G.A., Soldati, A.: Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249–76 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics Differential. Addison-Wesley, Boston (2001)

    Google Scholar 

  20. 20.

    Fan, F.G., Ahmadi, G.: Dispersion of ellipsoidal particle in an isotropic pseudo-turbulent flow field. ASME J. Fluids Eng. 117, 154–161 (1995)

    Article  Google Scholar 

  21. 21.

    Celledoni, E., Fassó, F., Säfström, N., Zanna, A.: The exact computation of the free rigid body motion and its use in splitting methods. SIAM J. Sci. Comput. 30(4), 2084–2112 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Oberbeck, A.: Ueber stationare flussigkeitsbeweegungen mit berucksichtigung der inneren reibung. Crelle’s J. 81, 80–92 (1876)

  23. 23.

    Meinke, M., Schröder, W., Siewert, C., Kunnen, R.P.J.: Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 45–56 (2014)

    Article  Google Scholar 

  24. 24.

    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Second. Springer, New York (1999)

  25. 25.

    Etheir, C.R., Steinman, D.A.: Exact fully 3D Navier-Stokes solutions for benchmarking. Int. J. Numer. Methods Fluids 19, 369–375 (1994)

    Article  MATH  Google Scholar 

  26. 26.

    Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Second. Springer, Berlin (2006)

  29. 29.

    Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A. 150, 262–268 (1990)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A. 146, 319–323 (1990)

    MathSciNet  Article  Google Scholar 

  31. 31.

    van Zon, R., Schofield, J.: Numerical implementation of the exact dynamics of free rigid bodies. J. Comput. Phys. 225, 145–164 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second. Springer, Berlin (1993)

  33. 33.

    Mclachlan, R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35(2), 258–268 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Laskar, J., Robutel, P.: High order symplectic integrators for perturbed hamiltonian systems. Celest. Mech. Dyn. Astron. 80(1), 39–62 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Kozlov, R., Kværnø, A., Owren, B.: The behaviour of the local error in splitting methods applied to stiff problems. J. Comput. Phys. 195, 576–593 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161, 140–168 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second. Springer, Berlin Heidelberg (1996)

    Google Scholar 

Download references


This work has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement (no. 691070) as well as the SPIRIT project (no. 231632) under the Research Council of Norway FRIPRO funding scheme. Part of this work was done while visiting the University of Cambridge, UK and La Trobe University, Melbourne, Australia.

Author information



Corresponding author

Correspondence to Benjamin Tapley.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tapley, B., Celledoni, E., Owren, B. et al. A novel approach to rigid spheroid models in viscous flows using operator splitting methods. Numer Algor 81, 1423–1441 (2019). https://doi.org/10.1007/s11075-019-00666-1

Download citation


  • Ordinary differential equations
  • Numerical analysis
  • Splitting methods
  • Multiphase flows
  • Immersed rigid bodies
  • Order reduction