World Health Organization: Dengue-Guidelines for Diagnosis, Treatment, Prevention and Control, WHO, Geneva. Accessed 2 Feb (2012) (2009)
World Health Organization (WHO): Dengue July 2010 Available at http://www.who.int/topics/dengue/en/
Nishiura, H.: Mathematical and statistical analyses of the spread of dengue. Dengue Bull. 30, 51–67 (2006)
Google Scholar
Hales, S., De Wet, N., Maindonald, J., Woodward, A.: Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360, 830–834 (2002)
Article
Google Scholar
Rodrigues, H., Monteiro, M., Torres, D., Zinober, A.: Dengue disease, basic reproduction number and control. Int. J. Comput. Math. 89, 334–346 (2012)
MathSciNet
Article
Google Scholar
Sardar, T., Rana, S., Chattopadhyay, J.: A mathematical model of dengue transmission with memory. Commun. Nonlinear Sci. Numer. Simul. 22, 511–525 (2015)
MathSciNet
Article
Google Scholar
Diethelm, K.: The Analysis of Fractional Differential Equations, vol. 9, pp 1333–41. Springer, Berlin (2004)
Google Scholar
Jiang, X., Qi, H.: Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative. J. Phys. A Math. Theor. 45, 4851011–48510111 (2012)
MathSciNet
Article
Google Scholar
Magin, R.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)
MathSciNet
Article
Google Scholar
Qin, S., Liu, F., Turner, I., Yu, Q., Yang, Q., Vegh, V.: Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2*-weighted magnetic resonance imaging at 7T. Magn. Reson. Med. 77, 1485–1494 (2017)
Article
Google Scholar
Liu, F., Anh, V., Turner, I.: Numerical solution for the space fractional Fokker-Planck Equation. J. Comput. Appl. Math. 166, 209–219 (2004)
MathSciNet
Article
Google Scholar
Shen, S., Liu, F., Liu, Q., Anh, V.: Numerical simulation of anomalous infiltration in porous media. Numer. Algor. 68, 443–454 (2015)
MathSciNet
Article
Google Scholar
Podlubny, I.: Fractional Differential Equations. Academic, New York (1999)
MATH
Google Scholar
Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Beijing (2011)
Book
Google Scholar
Ding, Y., Wang, Z., Ye, H.: Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 99, 1–7 (2011)
Google Scholar
EI-Shahed, M., Alsaedi, A.: The fractional SIAC model and influenza A. Math. Probl. Eng. 2011, 4803781–4803789 (2011)
Google Scholar
Hanert, E., Schumacher, E.: Front dynamics in fractional-order epidemic modes. J. Theor. Biol. 279, 9–16 (2011)
Article
Google Scholar
Diethelm, K., Ford, N., Freed, A., Luchko, Y.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194(6), 743–773 (2005)
MathSciNet
Article
Google Scholar
Pooseh, S., Rodrigues, H., Torres, S.: Fractional derivatives in dengue epidemics. Numer. Anal. Appl. Math. ICNAAM 2011, 739–742 (2011)
Google Scholar
Diethelm, K.: A fractional calcus based model for the simulation of an outbreak of dengue fever. Nonlin. Dyn. 71, 613–619 (2013)
Article
Google Scholar
Zhang, H., Jiang, X., Yang, X.: A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem. Appl. Math. Comput. 320, 302–318 (2018)
MathSciNet
MATH
Google Scholar
Feng, T., Gulliksson, M., Liu, W.: Adaptive finite element methods for the identification of elastic constants. J. Sci. Comput. 26, 217–235 (2006)
MathSciNet
Article
Google Scholar
Kloppers, P., Greeff, J.: Lotka-Volterra model parameter estimation using experiential data. Appl. Math. Comput. 224, 817–825 (2013)
MathSciNet
MATH
Google Scholar
Fermo, L., Mee, C., Seatzu, S.: Parameter estimation of monomial exponential sums in one and two variables. Appl. Math. Comput. 258, 576–586 (2015)
MathSciNet
MATH
Google Scholar
Li, Y., Meng, X., Zheng, B., Ding, Y.: Parameter identification of fractional order linear system based on Haar wavelet operational matrix. ISA Trans. 59, 79–84 (2015)
Article
Google Scholar
Yu, B., Jiang, X., Wang, C.: Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium. Appl. Math. Comput. 274, 106–118 (2016)
MathSciNet
MATH
Google Scholar
Wei, T., Wang, J.: A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 78, 95–111 (2014)
MathSciNet
Article
Google Scholar
Fan, W., Jiang, X., Qi, H.: Parameter estimation for the generalized fractional element network Zener model based on the Bayesian method. Physica A: Stat. Mech. Appl. 427, 40–49 (2015)
MathSciNet
Article
Google Scholar
Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Probl. 25, 115002 (2009)
MathSciNet
Article
Google Scholar
Yu, B., Jiang, X., Xu, H.: A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation. Numer. Algor. 68, 923–950 (2015)
MathSciNet
Article
Google Scholar
Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlin. Dyn. 29, 129–143 (2002)
MathSciNet
Article
Google Scholar
Yuste, S., Murillo, J.: On three explicit difference schemes for fractional diffusion and diffusion-wave equations. Phys. Scr. T136, 14–25 (2009)
Google Scholar
Li, T., Wang, Y., Luo, M.: Control of chaotic and hyperchaotic systems based on a fractional order controller. Chin. Phys. B 23, 0805011–08050111 (2014)
Google Scholar
Liu, F., Burrage, K., Hamilton, N.: Some novel techniques of parameter estimation for dynamical models in biological systems. IMA J. Appl. Math. 78, 1–26 (2013)
MathSciNet
Article
Google Scholar
Nelder, J., Mead, R.: Simplex method for function minimization. Comput. J. 7, 308–313 (1965)
MathSciNet
Article
Google Scholar
Shelokar, P., Siarry, P., Jayaraman, V., Kulkarni, B.: Particle swarm and colony algorithms hybridized for improved continuous optimization. Appl. Math. Comput. 188, 129–142 (2007)
MathSciNet
MATH
Google Scholar
Fan, S., Liang, Y., Zahara, E.: Hybrid simplex search and particle swarm optimization for the global optimization of multimodal function. Eng. Optim. 36, 401–418 (2004)
Article
Google Scholar
Qin, S., Liu, F., Turnera, I., Vegh, V., Yu, Q., Yang, Q.: Multi-term time-fractional Bloch equations and application in magnetic resonance imaging. J. Comput. Appl. Math. 319, 308–319 (2017)
MathSciNet
Article
Google Scholar
Qin, S., Liu, F., Turner, I., Yu, Q., Yang, Q., Vegh, V.: Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2*-weighted magnetic resonance imaging at 7 T. Magn. Reson. Med. 77, 1485–1494 (2017)
Article
Google Scholar