Fast boundary-domain integral method for unsteady convection-diffusion equation with variable diffusivity using the modified Helmholtz fundamental solution

Abstract

In this paper, we develop a boundary-domain integral formulation of the unsteady convection-diffusion equation with variable material properties. The derivation is based on the Green’s second theorem using the fundamental solution of the modified Helmholtz equation. Several discretisation approaches are considered: the full matrix and domain-decomposition approaches are compared with adaptive cross-approximation and wavelet-based approximation techniques. With the use of modified Helmholtz fundamental solution, whose shape is determined by the time step size and diffusivity, we are able to achieve an improvement in the final approximated matrix size. We present several numerical tests to verify the validity of the proposed integral formulation and assess the approximation properties for different diffusivity variations and different Péclet numbers. We develop guidelines for choosing the user prescribed parameters such as the hierarchical matrix admissibility parameter, the adaptive cross-approximation rank determination parameter and the wavelet thresholding parameter.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aimi, A., Diligenti, M., Lunardini, F.: Panel clustering method and restriction matrices for symmetric Galerkin BEM. Numer. Algor. 40(4), 355–382 (2005). https://doi.org/10.1007/s11075-005-8136-x

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    AL-Jawary, M., Ravnik, J., Wrobel, L., Škerget, L.: Boundary element formulations for numerical solution of two-dimensional diffusion problems with variable coefficients. Comput. Math. Appl. 64(8), 2695–2711 (2012). https://doi.org/10.1016/j.camwa.2012.08.002. http://linkinghub.elsevier.com/retrieve/pii/S0898122112005135

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    AL-Jawary, M., Wrobel, L.C.: Numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods. Eng. Anal. Bound. Elem. 35, 1279–1287 (2011)

    MathSciNet  Article  Google Scholar 

  4. 4.

    AL-Jawary, M., Wrobel, L.C.: Numerical solution of the twodimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods. Int. J. Comput. Math. 89(11), 1463–1487 (2012). https://doi.org/10.1080/00207160.2012.667087

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    AL-Jawary, M., Wrobel, L.C.: Radial integration boundary integral and integro-differential equation methods for two-dimensional heat conduction problems with variable coefficients. Eng. Anal. Bound. Elem. 36 (5), 685–695 (2012). https://doi.org/10.1016/j.enganabound.2011.11.019

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Antunes, P.R.: A numerical algorithm to reduce ill-conditioning in meshless methods for the Helmholtz equation. Numer. Algor., 1–19. https://doi.org/10.1007/s11075-017-0465-z (2018)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000). https://doi.org/10.1007/PL00005410

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003). https://doi.org/10.1007/s00607-002-1469-6

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms 1. Wavelets Appl. 20(2), 368–393 (1991). https://doi.org/10.1002/cpa.3160440202

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Bucher, H.F., Wrobel, L.C., Mansur, W.J., Magluta, C.: A novel approach to applying fast wavelet transforms in boundary element method. El J. Bound. Elem. BETEQ 2001, 187–195 (2002)

    Google Scholar 

  11. 11.

    Bucher, H.F., Wrobel, L.C., Mansur, W.J., Magluta, C.: On the block wavelet transform applied to the boundary element method. Engi. Anal. Bound. Elem. 28(6), 571–581 (2004). https://doi.org/10.1016/j.enganabound.2003.10.002

    Article  MATH  Google Scholar 

  12. 12.

    Cheng, A.D.A.H.D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 29(3), 268–302 (2005). https://doi.org/10.1016/j.enganabound.2004.12.001. http://linkinghub.elsevier.com/retrieve/pii/S0955799705000020

    Article  MATH  Google Scholar 

  13. 13.

    Cheng, H., Huang, J., Leiterman, T.J.: An adaptive fast solver for the modified Helmholtz equation in two dimensions. J. Comput. Phys. 211(2), 616–637 (2006). https://doi.org/10.1016/j.jcp.2005.06.006

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Clavero, C., Jorge, J.C.: A fractional step method for 2D parabolic convection-diffusion singularly perturbed problems: uniform convergence and order reduction. Numer. Algor. 75(3), 809–826 (2017). https://doi.org/10.1007/s11075-016-0221-9

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Cunha, C., Carrer, J., Oliveira, M., Costa, V.: A study concerning the solution of advection - diffusion problems by the boundary element method. Eng. Anal. Bound. Elem. 65, 79–94 (2016). https://doi.org/10.1016/j.enganabound.2016.01.002. http://www.sciencedirect.com/science/article/pii/S0955799716000047

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Dehghan, M.: Numerical solution of the three-dimensional advection-diffusion equation. Appl. Math. Comput. 150 (1), 5–19 (2004). https://doi.org/10.1016/S0096-3003(03)00193-0. http://www.sciencedirect.com/science/article/pii/S0096300303001930

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Hackbusch, W.: A Sparse Matrix Arithmetic Based on H-matrices. Part I: introduction to H-matrices. Computing 108, 89–108 (1999). https://doi.org/10.1007/s006070050015

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Hackbusch, W., Nowak, Z.P.: On the fast multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Heldring, A., Ubeda, E., Rius, J.M.: On the convergence of the ACA algorithm for radiation and scattering problems. IEEE Trans. Antennas Propag. 62 (7), 3806–3809 (2014). https://doi.org/10.1109/TAP.2014.2316293

    Article  Google Scholar 

  22. 22.

    Heldring, A., Ubeda, E., Rius, J.M.: Stochastic estimation of the Frobenius norm in the ACA convergence criterion. IEEE Trans. Antennas Propag. 63(3), 1155–1158 (2015). https://doi.org/10.1109/TAP.2014.2386306

    MathSciNet  Article  Google Scholar 

  23. 23.

    Karageorghis, A.: The method of fundamental solutions for elliptic problems in circular domains with mixed boundary conditions. Numer. Algor. 68 (1), 185–211 (2015). https://doi.org/10.1007/s11075-014-9900-6

    MathSciNet  Article  Google Scholar 

  24. 24.

    Kumar, A., Jaiswal, D.K., Kumar, N.: Analytical solutions of one-dimensional advection–diffusion equation with variable coefficients in a finite domain. J. Earth Syst. Sci. 118(5), 539–549 (2009)

    Article  Google Scholar 

  25. 25.

    Mikhailov, S.E.: Localized boundary-domain integral formulations for problems with variable coefficients. Eng. Anal. Bound. Elem. 26, 681–690 (2002)

    Article  Google Scholar 

  26. 26.

    Mikhailov, S.E., Nakhova, I.S.: Mesh-based numerical implementation of the localized boundary domain integral equation method to a variable-coefficient Neumann problem. J. Eng. Math. 51, 251–259 (2005)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Partridge, P.W., Brebbia, C.A., Wrobel, L.C.: The Dual Reciprocity Boundary Element Method. Computational Mechanics Publications Southampton, U.K Boston: Computational Mechanics Publications; London; New York (1992)

  28. 28.

    Pudykiewicz, J.A.: Numerical solution of the reaction-advection-diffusion equation on the sphere. J. Comput. Phys. 213(1), 358–390 (2006). https://doi.org/10.1016/j.jcp.2005.08.021. http://www.sciencedirect.com/science/article/pii/S0021999105003840

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Ravnik, J., Škerget, L.: A gradient free integral equation for diffusion - convection equation with variable coefficient and velocity. Eng. Anal. Bound. Elem. 37, 683–690 (2013). https://doi.org/10.1016/j.enganabound.2013.01.012

    MathSciNet  Article  Google Scholar 

  30. 30.

    Ravnik, J., Škerget, L.: Integral equation formulation of an unsteady diffusion-convection equation with variable coefficient and velocity. Comput. Math. Appl. 66, 2477–2488 (2014). https://doi.org/10.1016/j.camwa.2013.09.021

    MathSciNet  Article  Google Scholar 

  31. 31.

    Ravnik, J., Škerget, L., Hriberšek, M.: The wavelet transform for BEM computational fluid dynamics. Eng. Anal. Bound. Elem. 28, 1303–1314 (2004)

    Article  Google Scholar 

  32. 32.

    Ravnik, J., Škerget, L., žunič, Z.: Velocity-vorticity formulation for 3D natural convection in an inclined enclosure by BEM. Int. J. Heat Mass Transfer 51 (17-18), 4517–4527 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.018

    Article  MATH  Google Scholar 

  33. 33.

    Ravnik, J., Škerget, L., žunič, Z.: Fast single domain-subdomain BEM algorithm for 3D incompressible fluid flow and heat transfer. Int. J. Numer. Methods Eng. 77(12), 1627–1645 (2009). https://doi.org/10.1002/nme.2467

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Remešikova, M.: Numerical solution of two-dimensional convection-diffusion-adsorption problems using an operator splitting scheme. Appl. Math. Comput. 184(1), 116–130 (2007). https://doi.org/10.1016/j.amc.2005.06.018 . http://www.sciencedirect.com/science/article/pii/S0096300306004905

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Mathematical and Analytical Techniques with Applications to Engineering. Springer, Boston (2007). http://link.springer.com/10.1007/0-387-34042-4

    Google Scholar 

  36. 36.

    Sakai, K., Kimura, I.: A numerical scheme based on a solution of nonlinear advection-diffusion equations. J. Comput. Appl. Math. 173(1), 39–55 (2005). https://doi.org/10.1016/j.cam.2004.02.019. http://www.sciencedirect.com/science/article/pii/S0377042704001323

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Škerget, L., Hriberšek, M., Kuhn, G.: Computational fluid dynamics by boundary – domain integral method. Int. J. Numer. Methods Eng. 46 (8), 1291–1311 (1999). https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1291::AID-NME755>3.0.CO;2-O

    Article  Google Scholar 

  38. 38.

    Tibaut, J., Škerget, L., Ravnik, J.: Acceleration of a BEM based solution of the velocity-vorticity formulation of the Navier-Stokes equations by the cross approximation method. Eng. Anal. Bound. Elem. 82, 17–26 (2017). https://doi.org/10.1016/j.enganabound.2017.05.013

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Yang, K., Gao, X.W.X.W.: Radial integration BEM for transient heat conduction problems. Eng. Anal. Bound. Elem. 34(6), 557–563 (2010). https://doi.org/10.1016/j.enganabound.2010.01.008

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0196) and the Deutsche Forschungsgemeinschaft (project STE 544/58).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jure Ravnik.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ravnik, J., Tibuat, J. Fast boundary-domain integral method for unsteady convection-diffusion equation with variable diffusivity using the modified Helmholtz fundamental solution. Numer Algor 82, 1441–1466 (2019). https://doi.org/10.1007/s11075-019-00664-3

Download citation

Keywords

  • Modified Helmholtz equation
  • Boundary element method
  • Convection-diffusion equation
  • Adaptive cross-approximation
  • Wavelet transform
  • Hierarchical matrices