On numerical evaluation of integrals involving oscillatory Bessel and Hankel functions

Abstract

A mixed-type formulation composed of Gauss-Laguerre quadrature and meshless collocation is presented for approximation of oscillatory integrals containing Hankel function of the first kind. An adaptive splitting procedure is implemented to resolve singularity of the transformed integral at x = 0. The singularity ridden integral is computed by the multi-resolution quadrature. Bessel function of the second kind is transformed into a Bessel function of the first kind before being approximated by the meshless collocation method (Zaman and Siraj-ul-Islam, J. Comput. Appl. Math. 315, 161–174, 2017). Theoretical error bounds of the proposed methods are established. Numerical results obtained from the benchmark problems are presented in the tabular and graphical forms for verification of theoretical error bounds and accuracy of the methods.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical methods for physicists: a comprehensive guide. Academic press (2011)

  2. 2.

    Aziz, I., Siraj-ul-Islam, Khan, W.: Quadrature rules for numerical integration based on Haar wavelets and hybrid functions. Comput. Math. Appl. 61, 2770–2781 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Bao, G., Sun, W.: A fast algorithm for the electromagnetic scattering from a large cavity. SIAM J. Sci. Comput. 27(2), 553–574 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Brunet, M., Morestin, F., Walter-Leberre, H.: Failure analysis of anisotropic sheet-metals using a non-local plastic damage model. J. Mater. Proc. Tech. 170(1), 457–470 (2005)

    Article  Google Scholar 

  5. 5.

    Chandler-Wilde, S.N., Langdon, S.: A Galerkin boundary element method for high frequency scattering by convex polygons. SIAM J. Numer. Anal. 45(2), 610–640 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Chen, R.: Numerical approximations to integrals with a highly oscillatory Bessel kernel. Appl. Numer. Math. 62(5), 636–648 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Chen, R.: On the evaluation of Bessel transformations with the oscillators via asymptotic series of Whittaker functions. J. Comput. Appl. Math. 250, 107–121 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Chen, R.: Numerical approximations for highly oscillatory Bessel transforms and applications. J. Math. Anal. Appl. 421(2), 1635–1650 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Elliott, D., Johnston, P.R.: Gauss-Legendre quadrature for the evaluation of integrals involving the Hankel function. J. Comput. Appl. Math. 211(1), 23–35 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Evans, G.A., Chung, K.C.: Some theoretical aspects of generalized quadrature methods. J. Complexity 19(3), 272–285 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Ferreira, A.J.M., Fasshauer, G.E., Batra, R.C., Rodrigues, J.D.: Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter. Compos. Struct. 86, 328–343 (2008)

    Article  Google Scholar 

  12. 12.

    Gradshteyn, I.S., Ryzhik, I.M.: : Table of integrals, series, and products, 7th edn. Academic Press, New York (2007)

    Google Scholar 

  13. 13.

    Huybrechs, D., Vandewalle, S.: A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput. 29(6), 2305–2328 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Ioakimidis, N.I.: Application of the gauss-Laguerre and radau-Laguerre quadrature rules to the numerical solution of Cauchy type singular integral equations. Comput. Struct. 14(1), 63–70 (1981)

    MATH  Article  Google Scholar 

  15. 15.

    Jentschura, U.D., Lötstedt, E.: Numerical calculation of Bessel, Hankel and Airy functions. Comput. Phys. Commun. 183(3), 506–519 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Kzaz, M.: Convergence acceleration of the gauss-Laguerre quadrature formula. Appl. Num. Math. 29, 201–220 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Levin, D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67(1), 95–101 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Levin, D.: Analysis of a collocation method for integrating rapidly oscillatory functions. J. Comput. Appl. Math. 78(1), 131–138 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Lu, T., Yevick, D.: A vectorial boundary element method analysis of integrated optical waveguides. J. Lightw. Tech. 21(8), 1793 (2003)

    Article  Google Scholar 

  20. 20.

    Piessens, R., Branders, M.: Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT Numer. Math. 23(3), 370–381 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Ramesh, P.S., Lean, M.H.: A boundary integral formulation for natural convection flows. I. J. Numer. Method Biomed. Eng. 8(6), 407–415 (1992)

    MATH  Google Scholar 

  22. 22.

    Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comp. Math. 11, 193–210 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Schippers, H.: Boundary-integral-equation methods for screen problems in acoustic and electromagnetic aerospace research. J. Eng. Math. 34(1-2), 143–162 (1998)

    MATH  Article  Google Scholar 

  24. 24.

    Siraj-ul-Islam, Al-Fhaid, A.S., Zaman, S.: Meshless and wavelets based complex quadrature of highly oscillatory integrals and the integrals with stationary points. Eng. Anal. Bound. Elem. 37, 1136–1144 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Siraj-ul-Islam, Aziz, I., Haq, F.: A comparative study of numerical integration based on Haar wavelets and hybrid functions. Comput. Math. Appl. 59(6), 2026–2036 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Siraj-ul-Islam, Zaman, S.: New quadrature rules for highly oscillatory integrals with stationary points. J. Comput. Appl. Math. 278, 75–89 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Watson, G.N.: A treatise on the theory of Bessel functions. Cambridge University Press (1995)

  28. 28.

    Xiang, S.: Numerical analysis of a fast integration method for highly oscillatory functions. BIT Numer. Math. 47(2), 469–482 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Xiang, S., Cho, Y.J., Wang, H., Brunner, H.: Clenshaw–Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications. IMA J. Numer. Analy. 31(4), 1281–1314 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Xiang, S., Gui, W.: On generalized quadrature rules for fast oscillatory integrals. Appl. Math. Comput. 197(1), 60–75 (2008)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Xiang, S., Wang, H.: Fast integration of highly oscillatory integrals with exotic oscillators. Math Comput. 79(270), 829–844 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Xu, Z., Milovanović, G.V.: Efficient method for the computation of oscillatory Bessel transform and Bessel Hilbert transform. J. Comput. Appl. Math. 308, 117–137 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Xu, Z., Milovanović, G.V., Xiang, S.: Efficient computation of highly oscillatory integrals with Hankel kernel. Appl. Math. Comput. 261, 312–322 (2015)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Xu, Z., Xiang, S.: On the evaluation of highly oscillatory finite Hankel transform using special functions. Numer. Algorithms 72(1), 37–56 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Zaman, S., Siraj-ul-Islam: Efficient numerical methods for Bessel type of oscillatory integrals. J. Comput. Appl. Math. 315, 161–174 (2017)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Siraj-ul-Islam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaman, S., Siraj-ul-Islam On numerical evaluation of integrals involving oscillatory Bessel and Hankel functions. Numer Algor 82, 1325–1343 (2019). https://doi.org/10.1007/s11075-019-00657-2

Download citation

Keywords

  • Oscillatory integrals
  • Hankel function of the first kind
  • Gauss-Laguerre quadrature
  • Bessel function of the second kind
  • Meshless collocation method