Nonlinear Fredholm integral equations and majorant functions


From the majorant principle of Kantorovich and the theoretical significance of Newton’s method, we obtain domains of existence and uniqueness of solution for nonlinear Fredholm integral equations, so that these domains are defined from the positive real zeros of a scalar function that we call majorant function. We illustrate this study with three Fredholm integral equations, where separable and nonseparable kernels are involved, by obtaining domains of existence and uniqueness of solution, approximating solutions numerically and giving a priori and a posteriori error estimates of the approximations.

This is a preview of subscription content, log in to check access.


  1. 1.

    Ahues, M.: Newton methods with Hoolder̈ derivative. Numer. Func. Anal. and Optimiz. 25(5–6), 1–17 (2004)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Altürk, A.: Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem. SpringerPlus 5, 1962 (2016)

    Article  Google Scholar 

  3. 3.

    Awawdeh, F., Adawi, A., Al-Shara, S.: A numerical method for solving nonlinear integral equations. Int. Math. Forum 4, 805–817 (2009)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  5. 5.

    Carutasu, V.: Numerical solution of two-dimensional nonlinear Fredholm integral equations of the second kind by spline functions. Gen. Math. 9(1–2), 31–48 (2001)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Ezquerro, J.A., Hernández, M.A.: The Newton method for Hammerstein equations. J. Comput. Anal. Appl. 7(4), 437–446 (2005)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Ezquerro, J.A., González, D., Hernández, M.A.: A variant of the Newton-Kantorovich theorem for nonlinear integral equations of mixed Hammerstein type. Appl. Math. Comput. 218, 9536–9546 (2012)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Ezquerro, J.A., Hernández-Verón, M.A.: Newton’s Method: an Updated Approach of Kantorovich’s Theory. Birkhäuser, Cham (2017)

    Google Scholar 

  9. 9.

    Gragg, W.B., Tapia, R.A.: Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal. 11, 10–13 (1974)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gutiérrez, J.M., Hernández, M.A., Salanova, M.A.: On the approximate solution of some Fredholm integral equations by Newton’s method. Southwest J. Pure Appl. Math. 1, 1–9 (2004)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Jafari Emamzadeh, M., Tavassoli Kajani, M.: Nonlinear Fredholm integral equation of the second kind with quadrature methods. Journal of Mathematical Extension 4(2), 51–58 (2010)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Ibrahim, I.A.: On the existence of solutions of functional integral equation of Urysohn type. Comput. Math. Appl. 57(10), 1609–1614 (2009)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, New York (1982)

    Google Scholar 

  14. 14.

    Lepik, Ü., Tamme, E.: Solution of nonlinear Fredholm integral equations via the Haar wavelet method. Proc. Estonian Acad. Sci. Phys. Math. 56(1), 17–27 (2007)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Moore, C.: Picard iterations for solution of nonlinear equations in certain Banach spaces. J. Math. Anal. Appl. 245(2), 317–325 (2000)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Nadir, M., Khirani, A.: Adapted Newton-Kantorovich method for nonlinear integral equations. J. Math. Stat. 12(3), 176–181 (2016)

    Article  Google Scholar 

  17. 17.

    Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1966)

    Google Scholar 

  18. 18.

    Potra, F.A., Ptàk, V.: Nondiscrete Induction and Iterative Processes. Number 103 in Research Notes in Mathematics. Wiley, Boston-London-Melbourne (1984)

    Google Scholar 

  19. 19.

    Potra, F.A.: The Kantorovich theorem and interior point methods. Math. Program., Ser. A 102, 47–70 (2005)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Potra, F.A.: A superquadratic variant of Newton’s method. SIAM J. Numer. Anal. 55(6), 2863–2884 (2017)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Rall, L.B.: Computational Solution of Nonlinear Operator Equations. Robert E Krieger Publishing Company, Michigan (1979)

    Google Scholar 

  22. 22.

    Rashidinia, J., Zarebnia, M.: New approach for numerical solution of Hammerstein integral equations. Appl. Math. Comput. 185, 147–154 (2007)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Rashidinia, J., Parsa, A.: Analytical-numerical solution for nonlinear integral equations of Hammerstein type. International Journal of Mathematical Modelling and Computations 2(1), 61–69 (2012)

    Google Scholar 

  24. 24.

    Ray, S.S., Sahu, P.K.: Numerical methods for solving Fredholm integral equations of second kind. Abstr. Appl. Anal. Art. ID 426916, 17 (2013)

  25. 25.

    Saberi-Nadja, J., Heidari, M.: Solving nonlinear integral equations in the Urysohn form by Newton-Kantorovich-quadrature method. Comput. Math. Applic. 60, 2018–2065 (2010)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Wazwaz, A.M.: A First Course in Integral Equations. World Scientific, Singapore (1997)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. A. Ezquerro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by Ministerio de Economía y Competitividad under grant MTM2014-52016-C2-1-P.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ezquerro, J.A., Hernández-Verón, M.A. Nonlinear Fredholm integral equations and majorant functions. Numer Algor 82, 1303–1323 (2019).

Download citation


  • Fredholm integral equation
  • Newton’s method
  • Majorant function
  • Domain of existence of solution
  • Domain of uniqueness of solution
  • Error estimates

Mathematics Subject Classification (2010)

  • 45G10
  • 47H99
  • 65J15