Abstract
Studying the dynamics of runaway electrons has theoretical and practical significance. As the system is highly relativistic, multi-scale and nonlinear, accurate and efficient numerical methods with long-term stability are necessary. In this paper, we develop symplectic methods with adaptive time step and discuss the choice of step-size functions in accordance with the simulation problems for runaway electrons. In the implementation, in order to explore the practical impact of runaway electron dynamics, we use the electromagnetic field and some parameters often used in the study of plasma problems. Numerical results show that the new derived symplectic methods with adaptive time step exhibit good invariant-preserving property and superior stability over longtime integration. Moreover, with appropriate adaptive technique, the numerical efficiency in simulations is improved apparently. They are illustrated in the numerical experiments.
Similar content being viewed by others
References
Dreicer, H.: Electron and ion runaway in a fully ionized gas. Phys. Rev. 115(2), 238–249 (1959)
Kulsrud, R.M., Sun, Y.C., Winsor, N.K., Fallon, H.A.: Runaway electrons in a plasma. Phys. Rev. Lett. 31(11), 690 (1973)
Rosenbluth, M., Putvinski, S.: Theory for avalanche of runaway electrons in tokamaks. Nucl. Fusion 37(10), 1355 (1997)
Bartels, H.W.: Impact of runaway electrons. Fusion Eng. Des. 23(4), 323–328 (1994)
Jaspers, R., Cardozo, N.J.L., Donne, A.J.H., Widdershoven, H.L.M., Finken, K.H.: A synchrotron radiation diagnostic to observe relativistic runaway electrons in a tokamak plasma. Rev. Sci. Instrum. 72(1), 466–470 (2001)
Liu, J., Wang, Y., Qin, H.: Collisionless pitch-angle scattering of runaway electrons. Nucl. Fusion 56(6), 064002 (2016)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer Science & Business Media, Berlin (2006)
Guan, X., Qin, H., Fisch, N.J.: Phase-space dynamics of runaway electrons in tokamaks. Phys. Plasmas 17(9), 092502 (2010)
Zhou, Z., He, Y., Sun, Y., Liu, J., Qin, H.: Explicit symplectic methods for solving charged particle trajectories. Phys. Plasmas 24(5), 052507 (2017)
Zhang, R., Wang, Y., He, Y., Xiao, J., Liu, J., Qin, H., Tang, Y.: Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field. Phys. Plasmas 25(2), 022117 (2018)
Zhang, R., Liu, J., Qin, H., Wang, Y., He, Y., Sun, Y.: Volume-preserving algorithm for secular relativistic dynamics of charged particles. Phys. Plasmas 22(4), 044501 (2015)
He, Y., Sun, Y., Zhang, R., Wang, Y., Liu, J., Qin, H.: High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields. Phys. Plasmas 23(9), 092109 (2016)
Wesson, J., Campbell, D.J.: Tokamaks, vol. 149. Oxford University Press, London (2011)
Wang, Y., Qin, H., Liu, J.: Multi-scale full-orbit analysis on phase-space behavior of runaway electrons in tokamak fields with synchrotron radiation. Phys. Plasmas 23(6), 062505 (2016)
Liu, C., Qin, H., Hirvijoki, E., Wang, Y., Liu, J.: The role of magnetic moment in the collisionless pitch-angle scattering of runaway electrons. arXiv:1804.01971
Wang, Y., Liu, J., Qin, H.: Lorentz covariant canonical symplectic algorithms for dynamics of charged particles. Phys. Plasmas 23(12), 122513 (2016)
Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)
Eriksson, L., Porcelli, F.: Dynamics of energetic ion orbits in magnetically confined plasmas. Plasma Phys. Controlled Fusion 43(4), R145 (2001)
Porcelli, F., Eriksson, L.-G., Furno, I.: Topological transitions of fast ion orbits in magnetically confined plasmas. Phys. Lett. A 216(6), 289–295 (1996)
Carbajal, L., Delcastillonegrete, D., Spong, D., Seal, S., Baylor, L.: Space dependent, full orbit effects on runaway electron dynamics in tokamak plasmas. Phys. Plasmas 24(4), 39–S202 (2017)
Liu, J., Qin, H., Wang, Y., Yang, G., Zheng, J., Yao, Y., Yifeng, Z., Liu, Z., Liu, X.: Largest particle simulations downgrade the runaway electron risk for iter
Funding
This research was supported by the National Natural Science Foundation of China (11771436, 11261140328, 11305171), by the CAS Program for Interdisciplinary Collaboration Team, the Foundation for Innovative Research Groups of the NNSFC (11321061), and the ITER-China Program (2014GB124005, 2015GB111003), JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC-11261140328).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shi, Y., Sun, Y., He, Y. et al. Symplectic integrators with adaptive time step applied to runaway electron dynamics. Numer Algor 81, 1295–1309 (2019). https://doi.org/10.1007/s11075-018-0636-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-018-0636-6