Skip to main content
Log in

A meshfree method for solving the Monge–Ampère equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper solves the two-dimensional Dirichlet problem for the Monge-Ampère equation by a strong meshless collocation technique that uses a polynomial trial space and collocation in the domain and on the boundary. Convergence rates may be up to exponential, depending on the smoothness of the true solution, and this is demonstrated numerically and proven theoretically, applying a sufficiently fine collocation discretization. A much more thorough investigation of meshless methods for fully nonlinear problems is in preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awanou, G.: Spline element method for Monge-Ampere equations. B.I.T Num. Analysis 55, 625–646 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Awanou, G.: On standard finite difference discretizations of the elliptic Monge-Ampere equation. J. Sci. Comput. 69, 892–904 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benamou, J.-D., Froese, B.D., Oberman, A.M.: Two numerical methods for the elliptic Monge-Ampère equation. ESAIM: Mathematical Modelling and Numerical Analysis 44(4), 737–758 (2010)

    Article  MATH  Google Scholar 

  4. Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 3, 1212–1249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böhmer, K.: Numerical Methods for Nonlinear Elliptic Differential Equations, a Synopsis. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  6. Böhmer, K., Schaback, R.: A nonlinear discretization theory. J. Comput. Appl. Math. 254, 204–219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Böhmer, K., Schaback, R.: Nonlinear discretization theory applied to meshfree methods and the Monge-Ampère equation. Fachbereich Mathematik und Informatik, Philipps–Universitȧt Marburg in preparation (2016)

  8. Braess, D.: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  9. Brenner, S. C., Gudi, T., Neilan, M., Sung, L.Y.: C0 penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comput. 80, 1979–1995 (2011)

    Article  MATH  Google Scholar 

  10. Davydov, O.: Smooth finite elements and stable splitting. Fachbereich Mathematik und Informatik, Philipps–Universität Marburg (2007)

  11. Davydov, O., Saeed, A.: Numerical solution of fully nonlinear elliptic equations by Böhmer’s method. J. Comp. Appl.Math. 254, 43–54 (2013)

    Article  MATH  Google Scholar 

  12. Fasshauer, G., McCourt, M.: Kernel-Based Approximation Methods using MATLAB, Volume 19 of Interdisciplinary Mathematical Sciences. World Scientific, Singapore (2015)

    MATH  Google Scholar 

  13. Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47, 1226–1250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Froese, B.D.: Meshfree finite difference approximations for functions of the eigenvalues of the Hessian. Numer. Math. 138(1), 75–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49(4), 1692–1714 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Froese, B.D., Oberman, A.M.: Convergent filtered schemes for the Monge–Ampère partial differential equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Q., Liu, Z.Y.: Solving the 2-D elliptic Monge-Ampère equation by a Kansa’s method. Acta Mathematicae Applicatae Sinica, English Series 33(2), 269–276 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, J., Froese, B.D., Oberman, A.M., Xiao, M.Q.: A multigrid scheme for 3D Monge-Ampère equations. Int. J. Comput. Math. 94(9), 1850–1866 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Z.Y., He, Y.: Cascadic meshfree method for the elliptic Monge-Ampère equation. Engineering Analysis with Boundary Elements 37(7), 990–996 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Z.Y., He, Y.: An iterative meshfree method for the elliptic Monge-Ampère equation in 2D. Numer. Methods Partial Differential Equations 30(5), 1507–1517 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Oberman, A.: Wide stencil finite difference schemes for the elliptic Monge-Ampère equations and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10(1), 221–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schaback, R.: Unsymmetric meshless methods for operator equations. Numer. Math. 114, 629–651 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schaback, R.: All well–posed problems have uniformly stable and convergent discretizations. Numer. Math. 132, 597–630 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for several suggestions improving the paper, in particular the presentation of the numerical results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schaback.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhmer, K., Schaback, R. A meshfree method for solving the Monge–Ampère equation. Numer Algor 82, 539–551 (2019). https://doi.org/10.1007/s11075-018-0612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0612-1

Keywords

Mathematics Subject Classification (2010)

Navigation