Error analysis of HDG approximations for elliptic variational inequality: obstacle problem

Original Paper


In this article, we study the HDG approximation for the obstacle problem, i.e., variational inequalities, with remarkable convergence properties. Using polynomials of degree k ≥ 0 for both the potential u and the flux q, we show that the approximations of the potential and flux converge in L2 with the optimal order of k + 1 . The approximate trace of the potential is proved to converge with optimal order k + 1 in L2. Finally, numerical results are presented to verify these theoretical results.


HDG Error analysis Elliptic variational inequality 

Mathematics Subject Classification (2010)

65F10 65N30 65N55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This subject is supported partially by NSFC No. 11672032.


  1. 1.
    Friedman, A.: Variational Principles and Free-Boundary Problems. second edition. Robert E. Krieger Publishing Variational Inc., Malabar (1988)Google Scholar
  2. 2.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications Pure and Applied Mathematics, vol. 88. Academic, New York (A Subsidiary of Harcourt Brace Jovanovich, Publishers) (1980)Google Scholar
  3. 3.
    Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics, volume 134 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1987). Notas de Matematica [Mathematical Notes], 114Google Scholar
  4. 4.
    Brezis, H., Stampacchia, G.: Sur la regularite de la solution d’inequations elliptiques. Bull. Soc. Math. France 96, 153–180 (1968)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Lions, J.: Quelques Methodes De R6solution Des Probl+Mes Aux Limites Non Lin6aires. Dunod, Paris (1969)Google Scholar
  6. 6.
    Fichera, G.: Boundary value problems of elasticity with unilateral con- straints. Handbuch der Physik, Band VI a/2, Mechanics of Solids II Springer, 1972, pp. 391–424Google Scholar
  7. 7.
    Frehse, J.: On the regularity of the solution of a second order variational inequality. Boll. Un. Mat. Ital.(4) 6, 312–315 (1972)MathSciNetMATHGoogle Scholar
  8. 8.
    Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities part i. primal theorey. Numer. Math. 28, 431–443 (1977)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hlavacek: Dual finite element analysis for unilateral boundary value problems. Apl. Mat. 22, 14–51 (1977)MathSciNetMATHGoogle Scholar
  10. 10.
    Brezzi, F., Hager, Raviart, P.A.: Error estimates for the finite element solution of variational inequalities part II. Mixed methods. Numer. Math. 31, 1–16 (1978)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kikuchi, N.: Convergence of a penalty method for variational inequalities. TICOM Report 79-16 the University of Texas at Austin (1979)Google Scholar
  12. 12.
    Glowinski, R., Lions, J.-L., Tremolieres, R.: Numerical Analysis of Variational In- equalities, North-Holland, Amsterdam (1981)Google Scholar
  13. 13.
    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)CrossRefMATHGoogle Scholar
  14. 14.
    Hoppe, R.H.W., Kornhuber, R.: Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31, 301–323 (1994)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Blum, H., Suttmeier, F.-T.: Weighted error estimates for finite element solutions of variational inequalities. Computing 65, 119–134 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Yan, N.: A posteriori error estimators of gradient recovery type for elliptic obstacle problems[J]. Adv. Comput. Math. 15(1-4), 333–361 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Wang, F., Han, W., Cheng, X.L.: Discontinuous Galerkin methods for solving elliptic variational inequalities[J]. SIAM J. Numer. Anal. 48(2), 708–733 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hlavacek: Dual finite element analysis for elliptic problems with obstacles on the boundaryGoogle Scholar
  19. 19.
    Cockburn, B., Gopalakrishnan, J.: A characterization of hybridized mixed methods for second order elliptic Problems[J]. SIAM J. Numer. Anal. 42(1), 283–301 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Cockburn, B., Dong, B., Guzman, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008). MR2429868 (2009d:65166)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Cockburn, B.: Unified hybridization of discontinuous galerkin, mixed and continuous galerkin methods for second order elliptic Problems[J]. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Li, B, Xie, X.: Analysis of a family of HDG methods for second order elliptic problems [J]. J. Comput. Appl. Math. 307, 37–51 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations