Skip to main content
Log in

Coalescing points for eigenvalues of banded matrices depending on parameters with application to banded random matrix functions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, we develop and implement new numerical methods to locate generic degeneracies (i.e., isolated parameters’ values where the eigenvalues coalesce) of banded matrix valued functions. More precisely, our specific interest is in two classes of problems: (i) symmetric, banded, functions A(x) ∈ ℝn×n, smoothly depending on parameters x ∈ Ω ⊂ ℝ2 and (ii) Hermitian, banded, functions A(x) ∈ ℂn×n, smoothly depending on parameters x ∈Ω⊂ 3. The computational task of detecting coalescing points of banded parameter-dependent matrices is very delicate and challenging and cannot be handled using existing eigenvalues’ continuation approaches. For this reason, we present and justify new techniques that will enable continuing path of eigendecompositions and reliably decide whether or not eigenvalues coalesce, well beyond our ability to numerically distinguish close eigenvalues. As important motivation, and illustration, of our methods, we perform a computational study of the density of coalescing points for random ensembles of banded matrices depending on parameters. Relatively to random matrix models from truncated GOE and GUE ensembles, we will give computational evidence in support of power laws for coalescing points, expressed in terms of the size and bandwidth of the matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzi, M., Boito, P., Razouk, N.: Decay properties of spectral projectors with applications to electronic structure. SIAM Rev. 55-1, 3–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. Lond. A392, 45–57 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Casati, G., Chirikov, B.V., Guarneri, I., Izrailev, F.M.: Band-random-matrix model for quantum localization in conservative systems. Phys. Rev. E, 48–3, 1613–1616 (1993)

    Article  MATH  Google Scholar 

  4. Demko, S., Moss, W., Smith, P.: Decay rates for inverses of band matrices. Math. Comp. 43-168, 491–499 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dieci, L., Eirola, T.: On smooth orthonormal factorizations of matrices. SIAM J. Matrix Anal. Appl., 20, 800–819 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dieci, L., Gasparo, M.G., Papini, A.: Path following by SVD. Lecture Notes in Computer Science, vol. 3994, pp 677–684. Springer, New York (2006)

    MATH  Google Scholar 

  7. Dieci, L., Papini, A.: Continuation of eigendecompositions. Futur. Gener. Comput. Syst. 19, 1125–1137 (2003)

    Article  Google Scholar 

  8. Dieci, L., Papini, A., Pugliese, A.: Approximating coalescing points for eigenvalues of Hermitian matrices of three parameters. SIAM J. Matrix Anal. Appl. 34-2, 519–541 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dieci, L., Pugliese, A.: Singular values of two-parameter matrices: an algorithm to accurately find their intersections. Math. Comput. Simul. 79-4, 1255–1269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dieci, L., Pugliese, A.: Hermitian matrices depending on three parameters: coalescing eigenvalues. Linear Algebra Appl. 436, 4120–4142 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Disertori, M., Pinson, H., Spencer, T.: Density of states for random band matrix. Comm. Math. Phys. 232, 83 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edelman, A., Rao, N.R.: Random matrix theory. Acta Numerica, 233–297 (2005)

  13. Fyodorov, Y.V., Mirlin, A.D.: Scaling properties of localization in random band matrices: a σ-model approach. Phy. Rev. Lett. 67-18, 2405–2409 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hernzberg, G., Longuet-Higgins, H.C.: Intersection of potential energy surfaces in polyatomic molecules. Disc. Faraday Soc. 35, 77–82 (1963)

    Article  Google Scholar 

  15. Keller, J.: Multiple eigenvalues. Linear Algebra Appl. 429, 2209—2220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kus, M., Lewenstein, M., Haake, F.: Density of eigenvalues of random band matrices. Phys. Rev. A 44-5, 2800–2808 (1991)

    Article  MathSciNet  Google Scholar 

  17. von Neumann, J., Wigner, E.: Eigenwerte bei adiabatischen prozessen. Physik Zeitschrift 30, 467–470 (1929)

    MATH  Google Scholar 

  18. Parlett, B., Vömel, C.: The spectrum of a glued matrix. SIAM J. Matrix Anal. Appl., 31–1, 114–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schenker, J.: Eigenvector localization for random band matrices with power law band width. Comm. Math. Phys. 290, 1065–1097 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sodin, S.: The spectral edge of some random band matrices. Annals Math. 172, 2223–2251 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stone, A.J.: Spin-orbit coupling and the intersection of potential energy surfaces in polyatomic molecules. Proc. Roy. Soc Lond. A351, 141–150 (1976)

    Article  Google Scholar 

  22. Tracy, C.A., Widom, H.: The distributions of random matrix theory and their applications. In: Sidoravicius, V. (ed.) New Trends in Mathematical Physics, pp. 753–765 (2009)

  23. Wilkinson, M., Austin, E.J.: Densities of degeneracies and near-degeneracies. Phys. Rev. A 47–4, 2601–2609 (1993)

    Article  Google Scholar 

  24. Walker, P.N., Sanchez, M.J., Wilkinson, M.: Singularities in the spectra of random matrices. J. Mathem. Phys. 37–10, 5019–5032 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Walker, P.N., Wilkinson, M.: Universal fluctuations of Chern integers. Phys. Rev. Lett. 74–20, 4055–4058 (1995)

    Article  Google Scholar 

  26. Ye, Q.: On close eigenvalues of tridiagonal matrices. Numer. Math. 70, 507–514 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was supported in part under INDAM-GNCS, and funds from the Internationalization Plan of the Dept. of Industrial Engineering of the University of Florence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Dieci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieci, L., Papini, A. & Pugliese, A. Coalescing points for eigenvalues of banded matrices depending on parameters with application to banded random matrix functions. Numer Algor 80, 1241–1266 (2019). https://doi.org/10.1007/s11075-018-0525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0525-z

Keywords

Mathematics Subject Classification (2010)

Navigation