Abstract
In this work, we develop and implement new numerical methods to locate generic degeneracies (i.e., isolated parameters’ values where the eigenvalues coalesce) of banded matrix valued functions. More precisely, our specific interest is in two classes of problems: (i) symmetric, banded, functions A(x) ∈ ℝn×n, smoothly depending on parameters x ∈ Ω ⊂ ℝ2 and (ii) Hermitian, banded, functions A(x) ∈ ℂn×n, smoothly depending on parameters x ∈Ω⊂ ℝ3. The computational task of detecting coalescing points of banded parameter-dependent matrices is very delicate and challenging and cannot be handled using existing eigenvalues’ continuation approaches. For this reason, we present and justify new techniques that will enable continuing path of eigendecompositions and reliably decide whether or not eigenvalues coalesce, well beyond our ability to numerically distinguish close eigenvalues. As important motivation, and illustration, of our methods, we perform a computational study of the density of coalescing points for random ensembles of banded matrices depending on parameters. Relatively to random matrix models from truncated GOE and GUE ensembles, we will give computational evidence in support of power laws for coalescing points, expressed in terms of the size and bandwidth of the matrices.
Similar content being viewed by others
References
Benzi, M., Boito, P., Razouk, N.: Decay properties of spectral projectors with applications to electronic structure. SIAM Rev. 55-1, 3–64 (2013)
Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. Lond. A392, 45–57 (1984)
Casati, G., Chirikov, B.V., Guarneri, I., Izrailev, F.M.: Band-random-matrix model for quantum localization in conservative systems. Phys. Rev. E, 48–3, 1613–1616 (1993)
Demko, S., Moss, W., Smith, P.: Decay rates for inverses of band matrices. Math. Comp. 43-168, 491–499 (1984)
Dieci, L., Eirola, T.: On smooth orthonormal factorizations of matrices. SIAM J. Matrix Anal. Appl., 20, 800–819 (1999)
Dieci, L., Gasparo, M.G., Papini, A.: Path following by SVD. Lecture Notes in Computer Science, vol. 3994, pp 677–684. Springer, New York (2006)
Dieci, L., Papini, A.: Continuation of eigendecompositions. Futur. Gener. Comput. Syst. 19, 1125–1137 (2003)
Dieci, L., Papini, A., Pugliese, A.: Approximating coalescing points for eigenvalues of Hermitian matrices of three parameters. SIAM J. Matrix Anal. Appl. 34-2, 519–541 (2013)
Dieci, L., Pugliese, A.: Singular values of two-parameter matrices: an algorithm to accurately find their intersections. Math. Comput. Simul. 79-4, 1255–1269 (2008)
Dieci, L., Pugliese, A.: Hermitian matrices depending on three parameters: coalescing eigenvalues. Linear Algebra Appl. 436, 4120–4142 (2012)
Disertori, M., Pinson, H., Spencer, T.: Density of states for random band matrix. Comm. Math. Phys. 232, 83 (2002)
Edelman, A., Rao, N.R.: Random matrix theory. Acta Numerica, 233–297 (2005)
Fyodorov, Y.V., Mirlin, A.D.: Scaling properties of localization in random band matrices: a σ-model approach. Phy. Rev. Lett. 67-18, 2405–2409 (1991)
Hernzberg, G., Longuet-Higgins, H.C.: Intersection of potential energy surfaces in polyatomic molecules. Disc. Faraday Soc. 35, 77–82 (1963)
Keller, J.: Multiple eigenvalues. Linear Algebra Appl. 429, 2209—2220 (2008)
Kus, M., Lewenstein, M., Haake, F.: Density of eigenvalues of random band matrices. Phys. Rev. A 44-5, 2800–2808 (1991)
von Neumann, J., Wigner, E.: Eigenwerte bei adiabatischen prozessen. Physik Zeitschrift 30, 467–470 (1929)
Parlett, B., Vömel, C.: The spectrum of a glued matrix. SIAM J. Matrix Anal. Appl., 31–1, 114–132 (2009)
Schenker, J.: Eigenvector localization for random band matrices with power law band width. Comm. Math. Phys. 290, 1065–1097 (2009)
Sodin, S.: The spectral edge of some random band matrices. Annals Math. 172, 2223–2251 (2010)
Stone, A.J.: Spin-orbit coupling and the intersection of potential energy surfaces in polyatomic molecules. Proc. Roy. Soc Lond. A351, 141–150 (1976)
Tracy, C.A., Widom, H.: The distributions of random matrix theory and their applications. In: Sidoravicius, V. (ed.) New Trends in Mathematical Physics, pp. 753–765 (2009)
Wilkinson, M., Austin, E.J.: Densities of degeneracies and near-degeneracies. Phys. Rev. A 47–4, 2601–2609 (1993)
Walker, P.N., Sanchez, M.J., Wilkinson, M.: Singularities in the spectra of random matrices. J. Mathem. Phys. 37–10, 5019–5032 (1996)
Walker, P.N., Wilkinson, M.: Universal fluctuations of Chern integers. Phys. Rev. Lett. 74–20, 4055–4058 (1995)
Ye, Q.: On close eigenvalues of tridiagonal matrices. Numer. Math. 70, 507–514 (1995)
Funding
The work was supported in part under INDAM-GNCS, and funds from the Internationalization Plan of the Dept. of Industrial Engineering of the University of Florence.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dieci, L., Papini, A. & Pugliese, A. Coalescing points for eigenvalues of banded matrices depending on parameters with application to banded random matrix functions. Numer Algor 80, 1241–1266 (2019). https://doi.org/10.1007/s11075-018-0525-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-018-0525-z