Noda iterations for generalized eigenproblems following Perron-Frobenius theory
- 26 Downloads
Abstract
In this paper, we investigate the generalized eigenvalue problem Ax = λBx arising from economic models. Under certain conditions, there is a simple generalized eigenvalue ρ(A, B) in the interval (0, 1) with a positive eigenvector. Based on the Noda iteration, a modified Noda iteration (MNI) and a generalized Noda iteration (GNI) are proposed for finding the generalized eigenvalue ρ(A, B) and the associated unit positive eigenvector. It is proved that the GNI method always converges and has a quadratic asymptotic convergence rate. So GNI has a similar convergence behavior as MNI. The efficiency of these algorithms is illustrated by numerical examples.
Keywords
Generalized eigenproblem Generalized Noda iteration Nonnegative irreducible matrix M-matrix Quadratic convergence Perron-Frobenius theoryMathematics Subject Classification (2010)
65F15 65F99Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We thank Prof. Weizhang Huang of University of Kansas for introducing his work [7] and providing the data of Example 5.3. We would like to thank an anonymous referee for his/her valuable comments.
References
- 1.Bai, Z.J., Demmel, J., Dongarra, J., Ruhe, A., Van der Vorst, H.: Templates for the solution of algebraic eigenvalue problems: a practical guide. Philadelphia, SIAM (2011)MATHGoogle Scholar
- 2.Bapat, R.B., OLesky, D.D., van den Driesseche, P.: Perron-frobenius theory for a generalized eigenproblem. Linear Multi. Algebra 40, 141–152 (1995)MathSciNetCrossRefMATHGoogle Scholar
- 3.Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences, Classics Appl Math, vol. 9. SIAM, Philadelphia (1994)CrossRefGoogle Scholar
- 4.Elsner, L.: Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear Algebra Appl. 15, 235–242 (1976)MathSciNetCrossRefMATHGoogle Scholar
- 5.Fujimoto, T.: A generalization of the Frobenius theorem. Toyama University Econ. Rev. 23(2), 269–274 (1979)Google Scholar
- 6.Golub, G.H., Van Loan, C.F.: Matrix computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)Google Scholar
- 7.Huang, W.: Sign-preserving of principal eigenfunctions in p1 finite element approximation of eigenvalue problems of second-order elliptic operators. J. Comput. Phys. 274, 230–244 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 8.Jia, Z.X., Lin, W.-W., Liu, C.S.: A positivity preserving inexact Noda iteration for computing the smallest eigenpair of a large irreducible M-matrix. Numer. Math. 130, 645–679 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 9.Liu, C.-S.: An inexact Noda iteration for computing the smallest eigenpair of a large irreducible monotone matrix. Mathematics 130(4), 645–679 (2015)MATHGoogle Scholar
- 10.Liu, C.-S., Guo, C.-H., Lin, W.-W.: A positivity preserving inverse iteration for finding the perron pair of an irreducible nonnegative third tensor. SIAM J. Matrix Anal. Appl. 37, 911–932 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 11.Morishima, M., Fujimoto, T.: The Frobenius theorem, its Solow Samuelson extension and the Kuhn-Tucker theorem. J. Math. Econ. 1, 199–205 (1974)MathSciNetCrossRefMATHGoogle Scholar
- 12.Noda, T.: Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix. Numer. Math. 17, 382–386 (1971)MathSciNetCrossRefMATHGoogle Scholar
- 13.Pasinetti, L.L.: Essays on the theory of joint production. Macmillan Press, London (1980)CrossRefGoogle Scholar
- 14.Sraffa, P.: Production of commodities by means of commodities. Cambridge University Press, Cambridge (1960)Google Scholar
- 15.Stewart, G.W.: Matrix algorithms, Volume II: Eigensystems. SIAM, Philadelphia (2001)CrossRefMATHGoogle Scholar
- 16.Steward, G.W., Sun, J.G.: Matrix perturbation theory. Academic Press, Boston (1990)Google Scholar
- 17.Varga, R.S.: Matrix iterative analysis. Springer, Berlin (1962)Google Scholar
- 18.Xue, J.: Computing the smallest eigenvalue of an M-matrix. SIAM J. Matrix Anal. Appl. 17(4), 748–762 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 19.Zhan, X.Z.: Matrix theory. American Mathematical Society Providence, Rhode Island (2013)CrossRefMATHGoogle Scholar