Skip to main content

A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices

Abstract

In the past few years, Bogoya, Böttcher, Grudsky, and Maximenko obtained the precise asymptotic expansion for the eigenvalues of a Toeplitz matrix Tn(f), under suitable assumptions on the generating function f, as the matrix size n goes to infinity. On the basis of several numerical experiments, it was conjectured by Serra-Capizzano that a completely analogous expansion also holds for the eigenvalues of the preconditioned Toeplitz matrix Tn(u)− 1Tn(v), provided f = v/u is monotone and further conditions on u and v are satisfied. Based on this expansion, we here propose and analyze an interpolation–extrapolation algorithm for computing the eigenvalues of Tn(u)− 1Tn(v). The algorithm is suited for parallel implementation and it may be called “matrix-less” as it does not need to store the entries of the matrix. We illustrate the performance of the algorithm through numerical experiments and we also present its generalization to the case where f = v/u is non-monotone.

References

  1. Ahmad, F., Al-Aidarous, E.S., Alrehaili, D.A., Ekström, S.-E., Furci, I., Serra-Capizzano, S.: Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? Numer. Alg. (in press). https://doi.org/10.1007/s11075-017-0404-z

  2. Arbenz, P.: Computing the eigenvalues of banded symmetric Toeplitz matrices. SIAM J. Sci. Stat. Comput. 12, 743–754 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  3. Badía, J.M., Vidal, A.M.: Parallel algorithms to compute the eigenvalues and eigenvectors of symmetric Toeplitz matrices. Parallel Algorithms Appl. 13, 75–93 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  4. Bini, D., Di Benedetto, F: Solving the generalized eigenvalue problem for rational Toeplitz matrices. SIAM J. Matrix Anal. Appl. 11, 537–552 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  5. Bini, D., Pan, V: Efficient algorithms for the evaluation of the eigenvalues of (block) banded Toeplitz matrices. Math. Comput. 50, 431–448 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  6. Bogoya, J.M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols. J. Math. Anal. Appl. 422, 1308–1334 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  7. Bogoya, J.M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Maximum norm versions of the Szegő and Avram–Parter theorems for Toeplitz matrices. J. Approx. Theory 196, 79–100 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  8. Bogoya, J.M., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness. Oper. Theory Adv. Appl. 259, 179–212 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  9. Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, New York (1999)

    Book  MATH  Google Scholar 

  10. Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Inside the eigenvalues of certain Hermitian Toeplitz band matrices. J. Comput. Appl. Math. 233, 2245–2264 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  11. Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods: Theory and Practice. North-Holland, Elsevier Science Publishers B.V., Amsterdam (1991)

    MATH  Google Scholar 

  12. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

    MATH  Google Scholar 

  13. Ekström, S.-E., Garoni, C., Serra-Capizzano, S: Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? Exper. Math. (in press). https://doi.org/10.1080/10586458.2017.1320241

  14. Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, vol. I. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  15. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2010)

    Google Scholar 

  16. Trench, W.F.: On the eigenvalue problem for Toeplitz band matrices. Linear Algebra Appl. 64, 199–214 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  17. Trench, W.F.: Characteristic polynomials of symmetric rationally generated Toeplitz matrices. Linear Multilinear Algebra 21, 289–296 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  18. Trench, W.F.: Numerical solution of the eigenvalue problem for symmetric rationally generated Toeplitz matrices. SIAM J. Matrix Anal. Appl. 9, 291–303 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  19. Trench, W.F.: Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices. SIAM J. Matrix Anal. Appl. 10, 135–146 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  20. Trench, W.F.: Numerical solution of the eigenvalue problem for efficiently structured Hermitian matrices. Linear Algebra Appl. 154–156, 415–432 (1991)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven-Erik Ekström.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ekström, SE., Garoni, C. A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices. Numer Algor 80, 819–848 (2019). https://doi.org/10.1007/s11075-018-0508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0508-0

Keywords

  • Preconditioned Toeplitz matrices
  • Eigenvalues
  • Asymptotic eigenvalue expansion
  • Polynomial interpolation
  • Extrapolation

Mathematics Subject Classification (2010)

  • 15B05
  • 65F15
  • 65D05
  • 65B05