A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices

Open Access
Original Paper
  • 47 Downloads

Abstract

In the past few years, Bogoya, Böttcher, Grudsky, and Maximenko obtained the precise asymptotic expansion for the eigenvalues of a Toeplitz matrix T n (f), under suitable assumptions on the generating function f, as the matrix size n goes to infinity. On the basis of several numerical experiments, it was conjectured by Serra-Capizzano that a completely analogous expansion also holds for the eigenvalues of the preconditioned Toeplitz matrix T n (u)− 1T n (v), provided f = v/u is monotone and further conditions on u and v are satisfied. Based on this expansion, we here propose and analyze an interpolation–extrapolation algorithm for computing the eigenvalues of T n (u)− 1T n (v). The algorithm is suited for parallel implementation and it may be called “matrix-less” as it does not need to store the entries of the matrix. We illustrate the performance of the algorithm through numerical experiments and we also present its generalization to the case where f = v/u is non-monotone.

Keywords

Preconditioned Toeplitz matrices Eigenvalues Asymptotic eigenvalue expansion Polynomial interpolation Extrapolation 

Mathematics Subject Classification (2010)

15B05 65F15 65D05 65B05 

References

  1. 1.
    Ahmad, F., Al-Aidarous, E.S., Alrehaili, D.A., Ekström, S.-E., Furci, I., Serra-Capizzano, S.: Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? Numer. Alg. (in press).  https://doi.org/10.1007/s11075-017-0404-z
  2. 2.
    Arbenz, P.: Computing the eigenvalues of banded symmetric Toeplitz matrices. SIAM J. Sci. Stat. Comput. 12, 743–754 (1991)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Badía, J.M., Vidal, A.M.: Parallel algorithms to compute the eigenvalues and eigenvectors of symmetric Toeplitz matrices. Parallel Algorithms Appl. 13, 75–93 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bini, D., Di Benedetto, F: Solving the generalized eigenvalue problem for rational Toeplitz matrices. SIAM J. Matrix Anal. Appl. 11, 537–552 (1990)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bini, D., Pan, V: Efficient algorithms for the evaluation of the eigenvalues of (block) banded Toeplitz matrices. Math. Comput. 50, 431–448 (1988)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bogoya, J.M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols. J. Math. Anal. Appl. 422, 1308–1334 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bogoya, J.M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Maximum norm versions of the Szegő and Avram–Parter theorems for Toeplitz matrices. J. Approx. Theory 196, 79–100 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bogoya, J.M., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness. Oper. Theory Adv. Appl. 259, 179–212 (2017)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, New York (1999)CrossRefMATHGoogle Scholar
  10. 10.
    Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Inside the eigenvalues of certain Hermitian Toeplitz band matrices. J. Comput. Appl. Math. 233, 2245–2264 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods: Theory and Practice. North-Holland, Elsevier Science Publishers B.V., Amsterdam (1991)MATHGoogle Scholar
  12. 12.
    Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)MATHGoogle Scholar
  13. 13.
    Ekström, S.-E., Garoni, C., Serra-Capizzano, S: Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? Exper. Math. (in press).  https://doi.org/10.1080/10586458.2017.1320241
  14. 14.
    Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, vol. I. Springer, Cham (2017)CrossRefMATHGoogle Scholar
  15. 15.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2010)Google Scholar
  16. 16.
    Trench, W.F.: On the eigenvalue problem for Toeplitz band matrices. Linear Algebra Appl. 64, 199–214 (1985)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Trench, W.F.: Characteristic polynomials of symmetric rationally generated Toeplitz matrices. Linear Multilinear Algebra 21, 289–296 (1987)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Trench, W.F.: Numerical solution of the eigenvalue problem for symmetric rationally generated Toeplitz matrices. SIAM J. Matrix Anal. Appl. 9, 291–303 (1988)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Trench, W.F.: Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices. SIAM J. Matrix Anal. Appl. 10, 135–146 (1989)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Trench, W.F.: Numerical solution of the eigenvalue problem for efficiently structured Hermitian matrices. Linear Algebra Appl. 154–156, 415–432 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Information Technology, Division of Scientific ComputingUppsala UniversityUppsalaSweden
  2. 2.Institute of Computational ScienceUniversity of Italian Switzerland (USI)LuganoSwitzerland
  3. 3.Department of Science and High TechnologyUniversity of InsubriaComoItaly

Personalised recommendations