Skip to main content
Log in

Conditioning of the matrix-matrix exponentiation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

If A has no eigenvalues on the closed negative real axis, and B is arbitrary square complex, the matrix-matrix exponentiation is defined as A B := e log(A)B. It arises, for instance, in Von Newmann’s quantum-mechanical entropy, which in turn finds applications in other areas of science and engineering. In this paper, we revisit this function and derive new related results. Particular emphasis is devoted to its Fréchet derivative and conditioning. We propose a new definition of bivariate matrix function and derive some general results on their Fréchet derivatives, which hold, not only to the matrix-matrix exponentiation but also to other known functions, such as means of two matrices, second order Fréchet derivatives and some iteration functions arising in matrix iterative methods. The numerical computation of the Fréchet derivative is discussed and an algorithm for computing the relative condition number of A Bis proposed. Some numerical experiments are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abul-Dahab, M.A., Bakhet, A.K.: A certain generalized gamma matrix functions and their properties. J. Ana. Num. Theor. 3(1), 63–68 (2015)

    Google Scholar 

  2. Al-Mohy, A.H., Higham, N.J.: Computing the Fréchet derivative of the matrix exponential, with an application to condition number estimation. SIAM J. Matrix Anal. Appl. 30(4), 1639–1657 (2009)

    Article  Google Scholar 

  3. Al-Mohy, A.H., Higham, N.J.: Improved inverse scaling and squaring algorithms for the matrix logarithm. SIAM J. Sci Comput. 34(4), C153–C169 (2012)

    Article  MathSciNet  Google Scholar 

  4. Al-Mohy, A.H., Higham, N.J., Relton, S.D.: Computing the Fréchet derivative of the matrix logarithm and estimating the condition number. SIAM J. Sci. Comput. 35(4), C394–C410 (2013)

    Article  Google Scholar 

  5. Aprahamian, M., Higham, N.J.: The matrix unwinding function, with an application to computing the matrix exponential. SIAM J. Matrix Anal. Appl. 35 (1), 88–109 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Book  Google Scholar 

  7. Barradas, I., Cohen, J.E.: Iterated exponentiation, matrix-matrix exponentiation, and entropy. J. Math. Anal. Appli. 183, 76–88 (1994)

    Article  MathSciNet  Google Scholar 

  8. Cardoso, J.R., Ralha, R.: Matrix arithmetic-geometric mean and the computation of the logarithm. SIAM J. Matrix Anal. Appl. 37(2), 719–743 (2016)

    Article  MathSciNet  Google Scholar 

  9. Dieci, L., Morini, B., Papini, A.: Computational techniques for real logarithms of matrices. SIAM J. Matrix Anal. Appl. 17(3), 570–593 (1996)

    Article  MathSciNet  Google Scholar 

  10. Friedberg, S.H., Insel, A.J., Spence, L.E. Linear Algebra: 4th edn. Pearson Education, International Edition, London (2014)

  11. Gentleman, R., Vandal, A.C.: Computational algorithms for censored-data problems using intersection graphs. J. Comput. Graph. Stat. 10(3), 403–421 (2001)

    Article  MathSciNet  Google Scholar 

  12. Golub, G.H., Van Loan, C.F. Matrix Computations: 4th edn. Johns Hopkins Univ. Press, Baltimore (2013)

  13. Guo, C. -H., Higham, N.J.: A Schur-Newton method for the matrix pth root and its inverse. SIAM J. Matrix Anal. Appl. 28, 788–804 (2006)

    Article  MathSciNet  Google Scholar 

  14. Harris, W.F., Cardoso, J.R.: The exponential-mean-log-transference as a quantitative measure of the optical character of an average eye. Ophthalmic Physiol. Opt. 26, 380–383 (2006)

    Article  Google Scholar 

  15. Higham, N.J.: Stable iterations for the matrix square roots. Numer. Algorithms 15, 227–242 (1997)

    Article  MathSciNet  Google Scholar 

  16. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  17. Higham, N.J., Lin, L.: A Schur-Padé algorithm for fractional powers of a matrix. SIAM J. Matrix Anal. Appl. 32, 1056–1078 (2011)

    Article  MathSciNet  Google Scholar 

  18. Higham, N.J., Lin, L.: An improved Schur-Padé algorithm for fractional powers of a matrix and their Fréchet derivatives. SIAM J. Matrix Anal. Appl. 34, 1341–1360 (2013)

    Article  MathSciNet  Google Scholar 

  19. Iannazzo, B.: On the Newton method for the matrix p th root. SIAM J. Matrix Anal. Appl. 28, 503–523 (2006)

    Article  MathSciNet  Google Scholar 

  20. Iannazzo, B.: The geometric mean of two matrices from a computational viewpoint. Numer. Linear Alg. Appl. 23(2), 208–229 (2016)

    Article  MathSciNet  Google Scholar 

  21. Horn, R.A., Johnson, C.R. Matrix Analysis: 2nd edn. Cambridge University Press, Cambridge (2013)

  22. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  23. Jódar, L., Cortés, J.C.: On the hypergeometric matrix function. J. Comput. Appl. Math. 99, 205–217 (1998)

    Article  MathSciNet  Google Scholar 

  24. Jódar, L., Cortés, J. C.: Some properties of gamma and beta functions. Appl. Math. Lett. 11(1), 89–93 (1998)

    Article  MathSciNet  Google Scholar 

  25. Kenney, C.S., Laub, A.J.: Condition estimates for matrix functions. SIAM J. Matrix Anal. Appl. 10, 191–209 (1989)

    Article  MathSciNet  Google Scholar 

  26. Kressner, D.: Bivariate matrix function, Seminar für Angewandte Mathematik, Research Report No. 2010-22, Swiss Federal Institute of Technology Zurich (2010)

  27. Mathias, R.: A chain rule for matrix functions and applications. SIAM J. Matrix Anal. Appl. 17(3), 610–620 (1996)

    Article  MathSciNet  Google Scholar 

  28. Moler, C.B., Van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MathSciNet  Google Scholar 

  29. Najfeld, I., Havel, T.: Derivatives of the matrix exponential and their computation. Adv. Appl. Math. 16, 321–375 (1995)

    Article  MathSciNet  Google Scholar 

  30. Rowland, T., Weisstein, E.W.: Matrix exponential, MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/MatrixExponential.html

  31. Sastre, J., Ibáñez, J., Defez, E., Ruiz, P.: New scaling-squaring Taylor algorithms for computing the matrix exponential. SIAM J. Sci. Comput. 37, A439–A455 (2015)

    Article  MathSciNet  Google Scholar 

  32. Stickel, E.U.: Fast computation of matrix exponential and logarithm. Analysis 5, 163–173 (1985)

    Article  MathSciNet  Google Scholar 

  33. Van Loan, C.: The sensitivity of the matrix exponential. SIAM J. Numer. Anal. 14(6), 971–981 (1977)

    Article  MathSciNet  Google Scholar 

  34. Vandal, A.C., Gentleman, R., Liu, X.: Constrained estimation and likelihood intervals for censored data. Can. J. Stat. 33, 71–84 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. N. J. Higham (Editor) and the anonymous reviewers for their helpful suggestions and comments. In particular, the identity (6.4) and the bound for ∥ log(A)∥ after the proof of Theorem 6.1 were suggested by one of the anonymous reviewers. The work of the first author was supported by ISR-University of Coimbra (project UID/EEA/00048/2013) funded by “Fundação para a Ciência e a Tecnologia” (FCT). The work of the corresponding author is supported by Robat Karim branch, Islamic Azad University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, J.R., Sadeghi, A. Conditioning of the matrix-matrix exponentiation. Numer Algor 79, 457–477 (2018). https://doi.org/10.1007/s11075-017-0446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0446-2

Keywords

Navigation