Skip to main content
Log in

Construction of the optimal set of two or three quadrature rules in the sense of Borges

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we investigate a numerical method for the construction of an optimal set of quadrature rules in the sense of Borges (Numer. Math. 67, 271–288, 1994) for two or three definite integrals with the same integrand and interval of integration, but with different weight functions, related to an arbitrary multi-index. The presented method is illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelesco, A.: Sur l’ approximation simultanée de plusieurs intégrales définies. C. R. Acad. Sci. Paris 167, 629–631 (1918)

    Google Scholar 

  2. Aptekarev, A.: Multiple orthogonal polynomials. J. Comput. Appl. Math. 99, 423–447 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aptekarev, A.I., Branquinho, A., Van Assche, W.: Multiple orthogonal polynomials for classical weights. Trans. Amer. Math. Soc. 355(10), 3887–3914 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckermann, B., Coussement, J., Van Assche, W.: Multiple Wilson and Jacobi-Piñeiro polynomial. J. Approx. Theory 132, 155–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borges, C.: On a class of Gauss-like quadrature rules. Numer. Math. 67, 271–288 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Bruin, M.G.: Simultaneous padé approximation and orthogonality. In: Brezinski, C., Draux, A., Magnus, A.P., Maroni, P., Ronveaux, A. (eds.) Proc. Polynômes Orthogoneaux et Applications, Bar-le-Duc, 1984, Lect. Notes Math., vol. 1171, pp. 74–83. Springer (1985)

  7. de Bruin, M.G.: Some aspects of simultaneous rational approximation. In: Numerical Analysis and Mathematical Modeling, Banach Center Publications, vol. 24, pp. 51–84. PWN-Polish Scientific Publishers, Warsaw (1990)

  8. Coussement, J., Van Assche, W.: Gaussian quadrature for multiple orthogonal polynomials. J. Comput. Appl. Math. 178, 131–145 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fidalgo Prieto, U., Illán, J., López Lagomasino, G.: Hermite-Padé approximation and simultaneous quadrature formulas. J. Approx. Theory 126, 171–197 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Filipuk, G., Haneczok, M., Van Assche, W.: Computing recurrence coefficients of multiple orthogonal polynomials. Numer. Algorithms 70, 519–543 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gautschi, W.: Orthogonal polynomials: applications and computation. Acta Numerica 5, 45–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, 98. Cambridge University Press (2005)

  13. Lubinsky, D.S., Van Assche, W.: Simultaneous Gaussian quadrature for Angelesco systems. Jaén J. Approx. 8(2), 113–149 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Milovanović, G.V., Stanić, M.: Construction of multiple orthogonal polynomials by discretized Stieltjes-Gautschi procedure and corresponding Gaussian quadratures. Facta Univ. Ser. Math. Inform. 18, 9–29 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Milovanović, G.V., Stanić, M.: Multiple orthogonality and applications in numerical integration. In: Georgiev, P., Pardalos, P.M., Srivastava, H.M. (eds.) Nonlinear Analysis: Stability, Approximation, and Inequalities, Series: Springer Optimization and its Applications, vol. 68, Chapter 26, pp. 431–455. Springer, Berlin (2012)

  16. Mahler, K.: Perfect systems. Compositio Math. 19, 95–166 (1968)

    MathSciNet  MATH  Google Scholar 

  17. Nikishin, E.M., Sorokin, V.N.: Rational approximations and orthogonality, Transl. Am. Math Soc. 92, Providence, Rhode Island (1991)

  18. Piñeiro, L.R.: On simultaneous approximations for a collection of markov functions. Vestnik Mosk. Univ., Ser. I 42(2), 67–70 (1987). [English translation in Moscow Univ. Math. Bull. 42(2), 52–55 (1987)]

    MathSciNet  MATH  Google Scholar 

  19. Sorokin, V.N.: Generalization of classical polynomials and convergence of simultaneous Padé approximants. Trudy Sem. Petrovsk. 11, 125–165 (1986). [English translation in J. Soviet Math. 45, 1461–1499 (1986)]

    MATH  Google Scholar 

  20. Sorokin, V.N.: Hermite-Padé approximations for nikishin systems and the irrationality of ζ(3). Uspekhi Mat. Nauk 49(2), 167–168 (1994). [English translation in Russian Math. Surveys 49(2), 176–177 (1994)]

    MathSciNet  Google Scholar 

  21. Stanić, M.P.: Multiple orthogonal polynomials on the semicircle and applications. Appl. Math. Comput. 243, 269–282 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Van Assche, W., Coussement, E.: Some classical multiple orthogonal polynomials. J. Comput. Appl. Math. 127, 317–347 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Van Assche, W.: Multiple orthogonal polynomials, irrationality and transcendence. In: Berndt, B.C., Gesztesy, F. (eds.) Continued Fractions: from Analytic Number Theory to Constructive Approximation, Contemporary Mathematics, vol. 236, pp. 325–342 (1999)

  24. Van Assche, W.: Padé and Hermite-Padé approximation and orthogonality. Surveys in Approximation Theory 2, 61–91 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Van Assche, W.: Nearest neighbor recurrence relations for multiple orthogonal polynomials. J. Approx. Theory 163, 1427–1448 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Van Assche, W.: Non-symmetric linear difference equations for multiple orthogonal polynomials. In: CRM Proceedings and Lecture Notes, Amer. Math. Soc., Providence, RI, vol. 25, pp. 391–405 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana V. Tomović.

Additional information

The authors were supported in part by the Serbian Ministry of Education, Science and Technological Development (grant numbers #174015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomović, T.V., Stanić, M.P. Construction of the optimal set of two or three quadrature rules in the sense of Borges. Numer Algor 78, 1087–1109 (2018). https://doi.org/10.1007/s11075-017-0414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0414-x

Keywords

Mathematics Subject Classification (2010)

Navigation