Skip to main content
Log in

An inexact alternating direction method of multipliers for the solution of linear complementarity problems arising from free boundary problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A large number of free boundary problems can be formulated as linear-complementarity problems. In this paper, we propose an inexact alternating direction method of multipliers for solving linear complementarity problem arising from free boundary problems by using the special structure of these problems. The convergence of our proposed method is proved. Numerical results show that the proposed method is feasible and effective, and it is significantly faster than modified alternating direction implicit algorithm and many other methods, especially when dimension of the problem being solved is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, B.H.: Solutions of nonsymmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 33, 175–185 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Z.-Z.: On the monotone convergence of the projected iteration methods for linear complementarity problem. Numer. Math. - A Journal of Chinese Universities (English Series) 5, 228–233 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Bai, Z.-Z.: The convergence of parallel iteration algorithms for linear complementarity problems. Comput. Math. Appl. 32, 1–17 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z.-Z.: Experimental study of the asynchronous multisplitting relaxation methods for linear complementarity problems. J. Comput. Math. 20, 561–574 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 6, 917–933 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z.-Z., Evans, D.J.: Matrix multisplitting relaxation methods for linear complementarity problems. Int. J. Comput. Math. 63, 309–326 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bai, Z.-Z., Evans, D.J.: Asynchronous multisplitting relaxation methods for linear complementarity problems. Int. J. Comput. Math. 70, 519–538 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods. Ré,seaux et Systémes Répartis: Calculateurs Parallelés 13, 125–154 (2001)

    Google Scholar 

  10. Bai, Z.-Z., Evans, D.J.: Parallel chaotic multisplitting iterative methods for the large sparse linear complementarity problem. J. Comput. Math. 19, 281–292 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel asynchronous methods. Int. J. Comput. Math. 79, 205–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bai, Z.-Z., Huang, Y. -G.: Relaxed asynchronous iterations for the linear complementarity problem. J. Comput. Math. 20, 97–112 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Bai, Z.-Z., Huang, Y.-G.: A class of asynchronous parallel multisplitting relaxation methods for large sparse linear complementarity problem. J. Comput. Math. 21, 773–790 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Bai, Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baiocci, C.: Sur un probleme a frontiere libre traduisant le filtrage de liquides a travers des milieux proeux. Comptes Rendus Acad. Sci. Paris A273, 1215–1217 (1971)

    MATH  Google Scholar 

  16. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    MATH  Google Scholar 

  17. Bertsekas, D.: Nonlinear Programming, Mass. 2nd edn. Athena Scientific, Belmont (1999)

  18. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic, New York (1979)

    MATH  Google Scholar 

  19. Chan, R.H., Tao, M., Yuan, X.-M.: Linearized alternating direction method for constrained linear least-squares problem. East Asian J. Appl. Math. 2, 326–341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cimmati, G.: On a problem of the theory of lubrication governed by a variational inequality. Appl. Math. Optim. 3, 227–243 (1977)

    Article  MathSciNet  Google Scholar 

  21. Cottle, R.W., Golub, G.H., Sacher, R.S.: On the solution of large, structured linear complementarity problems: the block partitioned case. Appl. Math. Optim. 4, 347–363 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, San Diego (1992)

    MATH  Google Scholar 

  23. Cottle, R.W., Sacher, R.S.: On the solution of large, structured linear complementarity problems: the tridiagonal case. Appl. Math. Optim. 3, 321–340 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cryer, C.W.: The efficient solution of linear complementarity problems for tridiagonal Minkowski matrices. ACM Trans. Math. Soft. 9, 199–214 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cryer, C.W.: The solution of a quadratic programming using systematic overrelaxation. SIAM J. Control 9, 385–392 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Duvaut, G., Lion, J.L.: Inequalities in Mechanics and Physics. Dunod, Paris (1976)

    Book  Google Scholar 

  28. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finiteelement approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  29. Glowinski, R., Lions, J.L., Tremolieres, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  30. Hadjidimos, A., Lapidakis, M., Tzoumas, M.: On iterative solution for linear complementarity problem with an H+-matrix. SIAM J. Matrix Anal. Appl. 33, 97–110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 431, 197–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Harker, P.T., Xiao, B.: Newton’s method for the nonlinear complementarity problem. Math. Program. Series B 48, 339–357 (1990)

    Article  MATH  Google Scholar 

  33. Kindedehrer, G., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1983)

    Google Scholar 

  34. Lin, Y., Cryer, C.W.: An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary rroblems. Appl. Math. Optim. 13, 1–17 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mangasarian, O.L.: Solutions of symmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 22, 465–485 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Murty, K.G.: Linear complementarity, linear and nonlinear programming internet edition (1997)

  37. Pang, J.-S.: On the convergence of a basic iterative method for the implicit complementarity problem. J. Optim. Theory Appl. 37, 149–162 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pang, J.-S.: Necessary and sufficient conditions for the convergence of iterativemethods for the linear complementarity problem. J. Optim. Theory Appl. 42, 1–17 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tseng, P.: On linear convergence of iterative methods for the variational inequality problem. J. Comput. Appl. Math. 60, 237–252 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Van Bokhoven, W.M.G.: A Class of Linear Complementarity Problems is Solvable in Polynomial Time. Unpublished Paper, Department of Electrical Engineering, University of Technology, The Netherlands (1980)

    Google Scholar 

  41. Wu, C.-L., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, J.-J.: MSSOR-Based alternating direction method for symmetric positive-definite linear complementarity problems. Numer. Algor. 68, 631–644 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, L.-L.: Two-step modulus based matrix splitting iteration for linear complementarity problems. Numer. Algor. 57, 83–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer. Algor. 57, 83–99 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JJ., Zhang, JL. & Ye, WZ. An inexact alternating direction method of multipliers for the solution of linear complementarity problems arising from free boundary problems. Numer Algor 78, 895–910 (2018). https://doi.org/10.1007/s11075-017-0405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0405-y

Keywords

Mathematics Subject Classification (2010)

Navigation