Advertisement

Numerical Algorithms

, Volume 78, Issue 2, pp 625–641 | Cite as

Always convergent methods for nonlinear equations of several variables

  • A. Galántai
Original Paper

Abstract

We develop always convergent methods for solving nonlinear equations of the form \(f\left (x\right ) =0\) (\(f:\mathbb {R}^{n}\rightarrow \mathbb {R}^{m}\), \(x\in B=\times _{i=1}^{n}\left [ a_{i},b_{i}\right ] \)) under the assumption that f is continuous on B. The suggested methods use continuous space curves lying in the rectangle B and have a kind of monotone convergence to the nearest zero on the given curve, if it exists, or the iterations leave the region in a finite number of steps. The selection of space curves is also investigated. The numerical test results indicate the feasibility and limitations of the suggested methods.

Keywords

Nonlinear equations Continuous functions Global convergence Space filling curves 

Mathematics Subject Classification (2010)

65H10 65H05 65H20 47H10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author is indebted to the unknown referee whose remarks and suggestions improved the paper.

References

  1. 1.
    Abaffy, J., Forgó, F.: Globally convergent algorithm for solving nonlinear equations. J. Optim. Theory App. 77, 291–304 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abaffy, J., Galántai, A.: An always convergent algorithm for global minimization of multivariable continuous functions. Acta Polytechnica Hungarica (submitted)Google Scholar
  3. 3.
    Bader, M.: Space-Filling Curves An Introduction with Applications in Scientific Computing. Springer (2013)Google Scholar
  4. 4.
    Bauman, K.E.: The dilation factor of the Peano-Hilbert curve. Math. Notes 80(5), 609–620 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bebendorf, M.: Hierarchical Matrices. Springer (2008)Google Scholar
  6. 6.
    Buckley, S.: Space-filling curves and related functions. Irish Math. Soc. Bull. 36, 9–18 (1996)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Butz, A.R.: Space filling curves and mathematical programming. Inf. Control. 12, 314–330 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Butz, A.R.: Convergence with Hilbert’s space filling curve. J. Comput. Syst. Sci. 3, 128–146 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Butz, A.R.: Alternative algorithms for Hilbert’s space-filling curve. IEEE Trans. Comput. 424–426 (1971)Google Scholar
  10. 10.
    Butz, A.R.: Solutions of nonlinear equations with space filling curves. J. Math. Anal. Appl. 37, 351–383 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cherruault, Y.: Mathematical Modelling in Biomedicine. D. Reidel Publishing Company, Dordrecht (1986)Google Scholar
  12. 12.
    Cherruault, Y., Mora, G.: Optimisation Globale. Théorie des courbes α-denses, Economica, Paris. ISBN 2-7178-5065-1 (2005)Google Scholar
  13. 13.
    Dellnitz, M., Schütze, O., Sertl, S.: Finding zeros by multilevel subdivision techniques. IMA J. Numer. Anal. 22, 167–185 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dolan, E.D., Moré, J.J.: Benchmarking optimizations software with performance profiles. Math. Program. Series A 91, 201–213 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Galántai, A., Abaffy, J.: Always convergent iteration methods for nonlinear equations of Lipschitz functions. Numer Algor 69, 443–453 (2015). doi: 10.1007/s11075-014-9905-1 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Galántai, A.: Always convergent methods for solving nonlinear equations. J. Comput. Appl. Mech. 10(2), 183–208 (2015)zbMATHGoogle Scholar
  17. 17.
    Guillez, A.: Alienor, fractal algorithm for multivariable problems. Mathl Comput. Modell. 14, 245–247 (1990)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kálovics, F.: A reliable method for solving nonlinear systems of equations of few variables. Computing 48, 291–302 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kálovics, F.: Creating and handling box valued functions used in numerical methods. J. Comput. Appl. Math. 147, 333–348 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kálovics, F., Mészáros, G.: Box valued functions in solving systems of equations and inequalities. Numer. Algor. 36, 1–12 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer (1996)Google Scholar
  22. 22.
    Molinaro, A., Sergeyev, Ya.D.: An efficient algorithm for the zero crossing detection in digitized measurement signal. Measurement 30, 187–196 (2001)CrossRefGoogle Scholar
  23. 23.
    Molinaro, A., Sergeyev, Ya.D.: Finding the minimal root of an equation with the multiextremal and nondifferentiable left-hand part. Numer. Algor. 28, 255–272 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mora, G.: The Peano curves as limit of α-dense curves. Rev. R. Acad. Cien. Serie A. Mat. 99(1), 23–28 (2005)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20,1, 172–191 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pietrus, A.: A globally convergent method for solving nonlinear equations without the differentiability condition. Numer. Algor. 13, 60–76 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pintér, J.D.: Global Optimization in Action. Kluwer (1996)Google Scholar
  28. 28.
    Roose, A., Kulla, V., Lomp, M., Meressoo (eds.): Test Examples of Systems on Nonlinear Equations Version, vol. 3–90. Estonian Software and Computer Service Company, Tallinn (1990)Google Scholar
  29. 29.
    Sagan, H.: Space-filling Curves. Springer (1994)Google Scholar
  30. 30.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer (2013)Google Scholar
  31. 31.
    Smiley, M.W., Chun, C.: An algorithm for finding all solutions of a nonlinear system. J. Comput. Appl. Math. 137, 293–315 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Strongin, R.G.: On the convergence of an algorithm for finding a global extremum. Eng. Cybern. 11(4), 549–555 (1973)MathSciNetGoogle Scholar
  33. 33.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints. Springer (2000)Google Scholar
  34. 34.
    Szabó, Z.: Über gleichungslösende Iterationen ohne Divergenzpunkt I-III. Publ. Math. Debrecen 20, 222–233 (1973)zbMATHGoogle Scholar
  35. 35.
    Szabó, Z.: Über gleichungslösende Iterationen ohne Divergenzpunkt I-III. Publ. Math. Debrecen 21, 285–293 (1974)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Szabó, Z.: Über gleichungslösende Iterationen ohne Divergenzpunkt I-III. Publ. Math. Debrecen 27, 185–200 (1980)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Szabó, Z.: Ein Erveiterungsversuch des divergenzpunkfreien Verfahrens der Berührungsprabeln zur Lösung nichtlinearer Gleichungen in normierten Vektorverbänden. Rostock Math. Kolloq. 22, 89–107 (1983)zbMATHGoogle Scholar
  38. 38.
    Targonszky, G.: An always convergent iteration process. Acta Mathematica Hungarica 4(1-2), 119–126 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Törn, A., Zilinskas, A.: Global Optimization, Lecture Notes in Computer Science, pp. 350. Springer (1987)Google Scholar
  40. 40.
    Várterész, M.: Iterációs eljárások nem-lineáris egyenletek megoldására (Always convergent iterations for the solution of nonlinear equations). PhD Thesis, Kossuth University, Debrecen. In Hungarian, mek.oszk.hu/00800/00858/00858.pdf (1998)
  41. 41.
    Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik. Math. Z. 20, 131–150 (1924)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zumbusch, G.: Parallel Multilevel Methods: Adaptive Mesh Refinement and Loadbalancing. B.G. Teubner, Stuttgart-Leipzig-Wiesbaden (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Óbuda UniversityBudapestHungary

Personalised recommendations