Advertisement

Numerical Algorithms

, Volume 77, Issue 4, pp 1199–1211 | Cite as

A method of directly defining the inverse mapping for solutions of coupled systems of nonlinear differential equations

  • Mathew Baxter
  • Mangalagama Dewasurendra
  • Kuppalapalle Vajravelu
Original Paper

Abstract

Recently, Liao introduced a new method for finding analytical solutions to nonlinear differential equations. In this paper, we extend this idea to nonlinear systems. We study the system of nonlinear differential equations that governs nonlinear convective heat transfer at a porous flat plate and find functions that approximate the solutions by extending Liao’s Method of Directly Defining the Inverse Mapping (MDDiM).

Keywords

Method of directly defining the inverse mapping Nonlinear systems Fluid flow Heat transfer Analytical methods Homotopy analysis method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Professor Shijun Liao for the constructive comments (on the first draft of the paper) which led to definite improvement in the paper. The authors thank the reviewers for constructive comments that led to definite improvement in the paper.

References

  1. 1.
    Vajravelu, K., Cannon, J.R., Leto, J., Semmoum, R., Nathan, S., Draper, M., Hammock, D.: Nonlinear convection at a porous flat plate with application to heat transfer from a dike. J. Math. Anal. Appl. 277, 609–623 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cheng, P.: The influence of lateral mass flux on free convection boundary layers in saturated porous medium. Int. J. Heat Mass Transfer 20, 201–206 (1977)CrossRefGoogle Scholar
  3. 3.
    Liao, S., Zhao, Y.: On the method of directly defining inverse mapping for nonlinear differential equations. Numer. Algoritm. doi: 10.1007/s11075-015-0077-4
  4. 4.
    Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  5. 5.
    Liao, S.J.: Homotopy Analysis method in nonlinear differential equations. Springer & Higher Education Press, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  6. 6.
    Van Gorder, R.A., Vajravelu, K.: On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: A general approach. Commun. Nonlinear Sci. Numer. Simul. 14, 4078– 4089 (2009)Google Scholar
  7. 7.
    Vajravelu, K., Van Gorder, R.A.: Nonlinear flow phenomena and homotopy analysis: fluid flow and heat transfer. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Van Gorder, R.A.: Gaussian waves in the Fitzhugh-Nagumo equation demonstrate one role of the auxiliary function H(x) in the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 17, 1233–1240 (2012)Google Scholar
  9. 9.
    Baxter, M., Van Gorder, R.A., Vajravelu, K.: On the choice of auxiliary linear operator in the optimal homotopy analysis of the Cahn-Hilliard initial value problem. Numer. Algoritm. 66, 269–298 (2014)Google Scholar
  10. 10.
    Baxter, M., Van Gorder, R.A.: Exact and analytical solutions for a nonlinear sigma model. Math. Methods Appl. Sci. 37, 1642–1651 (2014)Google Scholar
  11. 11.
    Tan, Y., Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation. Commun. Nonlinear Sci. Numer. Simul. 13, 539–546 (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2315–2332 (2010)MathSciNetGoogle Scholar
  13. 13.
    Baxter, M., Van Gorder, R.A., Vajravelu, K.: Optimal analytic method for the nonlinear Hasegawa-Mima equation. Eur. Phys. J. Plus 129, 98 (2014)Google Scholar
  14. 14.
    Van Gorder, R.A.: Stability of the auxiliary linear operator and the convergence control parameter in the homotopy analysis method. Advances in the homotopy analysis method. In: Liao, S.-J. (ed.), pp. 123–180. World Scientific (2014)Google Scholar
  15. 15.
    Mallory, K., Van Gorder, R.A.: Optimal homotopy analysis and control of error for solutions to the non-local Whitham equation. Numer. Algoritm. 66, 843–863 (2014)Google Scholar
  16. 16.
    Van Gorder, R.A.: Analytical method for the construction of solutions to the föppl-von kármán equations governing deflections of a thin flat plate. Int. J. Non-linear Mech. 47, 1–6 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mathew Baxter
    • 2
  • Mangalagama Dewasurendra
    • 1
  • Kuppalapalle Vajravelu
    • 1
  1. 1.Department of MathematicsUniversity of Central FloridaOrlandoUSA
  2. 2.Department of MathematicsFlorida Gulf Coast UniversityFort MyersUSA

Personalised recommendations