Advertisement

Numerical Algorithms

, Volume 77, Issue 4, pp 1183–1197 | Cite as

A cubically convergent method for solving the largest eigenvalue of a nonnegative irreducible tensor

  • Wei-wei Yang
  • Qin Ni
Original Paper
  • 99 Downloads

Abstract

In this paper, we present a cubically convergent method for finding the largest eigenvalue of a nonnegative irreducible tensor. A cubically convergent method is used to solve an equivalent system of nonlinear equations which is transformed by the tensor eigenvalue problem. Due to particular structure of tensor, Chebyshev’s direction is added to the method with a few extra computation. Two rules are designed such that the descendant property of the search directions is ensured. The global convergence is proved by using the line search technique. Numerical results indicate that the proposed method is competitive and efficient on some test problems.

Keywords

Cubic convergence Tensor eigenvalue Nonnegative irreducible tensor Chebyshev’s method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Jiangsu Innovation Program for Graduate Education KYZZ160163; the National Natural Science Foundation of China under Grants 11471159,11571169,61661136001; and the Natural Science Foundation of Jiangsu Province under Grant BK20141409.

References

  1. 1.
    Chen, Z., Qi, L.Q., Yang, Q.Z., Yang, Y.N.: The solution methods for the largest eigenvalue (singular value) of nonnegative tensors and convergence analysis. Linear algebra Appl. 439, 3713–3733 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cui, C.F., Dai, Y.H., Nie, J.W.: All real eigenvalues of symmetric tensors. SIAM. J. Matrix Anal. Appl. 35, 1582–1601 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chang, K.C., Pearson, K., Zhang, T.: Perron-Frobenius theorem for nonnegative tensors. Commu. Math. Sci. 6, 507–520 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chang, K.C., Pearson, K., Zhang, T.: Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM. J. Matrix Anal. Appl. 32, 806–819 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Friedland, S., Gauber, S., Han, L.: Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebr. Appl. 438, 738–749 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hu, S.L., Huang, Z.H., Qi, L.Q.: Strictly nonnegative tensors and nonnegative tensor partition. Sci. China Math. 57, 181–195 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lim, L.H.: Singular values and eigenvalues of tensors, a variational approach Proceedings of the 1st IEEE International Workshop on Computational Advances of Multi-tensor Adaptive Processing, vol. 1, pp 129–132 (2005)Google Scholar
  8. 8.
    Liu, Y., Zhou, G.N., Ibrahim, F.: An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor. J. Comput. Appl. Math. 235, 286–292 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ng, M., Qi, L.Q., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ni, Q., Qi, L.Q., Wang, F.: An eigenvalue method for testing the positive definiteness of a multivariate form. IEEE Trans. Automat. Control. 53, 1096–1107 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ni, Q., Qi, L.Q.: A quadratically convergent algorithm for finding the largest eigenvalue of nonnegative homogeneous polynomial map. J. Glob. Optim. 61, 627–641 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nocedal, J., Wright, S.J.: Numerical optimization. Science Press, Beijing (2006)zbMATHGoogle Scholar
  13. 13.
    Qi, L.Q., Teo, K.L.: Multivariate polynomial minimization and its application in signal processing. J. Global. Optim. 26, 419–433 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Qi, L.Q.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Qi, L.Q., Wang, Y., Wu, E.X.: D-eigenvalues of diffusion kurtosis tensors. J. Compu. Appl. Math. 221, 150–157 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Qi, L.Q., Yu, G., Wu, E.X.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schatz, M.D., Low, T.M., Van De Geijn, R.A., Kolda, T.G.: Exploiting symmetry in tensors for high performance: multiplication with symmetric tensors. SIAM J. Sci. Comput. 36(5), 453–479 (2014)Google Scholar
  18. 18.
    Werner, W.: Iterative solution of systems of nonlinear equations based upon quadratic approximations. Comp. Maths. with Appls. 12A(3), 331–343 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yang, W.W., Ni, Q.: A new cubically convergent method for solving a system of nonlinear equations to submit to International Journal of Computer Mathematics (2016)Google Scholar
  20. 20.
    Yang, Y.N., Yang, Q.Z.: Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517–2530 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yang, Y.N., Yang, Q.Z.: Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J. Matrix Anal. Appl. 32, 1236–1250 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, L., Qi, L.Q.: Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor. Numer. Linear Algebra Appl. 19, 830–841 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of ScienceNUAANanjingPeople’s Republic of China

Personalised recommendations