Numerical Algorithms

, Volume 75, Issue 4, pp 1079–1101 | Cite as

An arbitrary band structure construction of totally nonnegative matrices with prescribed eigenvalues

  • Kanae AkaiwaEmail author
  • Yoshimasa Nakamura
  • Masashi Iwasaki
  • Akira Yoshida
  • Koichi Kondo
Original Paper


The construction of totally nonnegative (TN) matrices with prescribed eigenvalues is an important topic in real-valued nonnegative inverse eigenvalue problems. TN matrices are square matrices whose minors are all nonnegative. Our previous paper (Numer. Algor. 70, 469–484, ??2015) presented a finite-step construction of TN matrices limited to upper or lower Hessenberg forms with prescribed eigenvalues, based on the discrete hungry Toda (dhToda) equation which is derived from the study of integrable systems. Building on our previous paper, we produce the construction of banded TN matrices with an arbitrary number of diagonals in both lower and upper triangular parts and prescribed eigenvalues, involving upper Hessenberg, lower Hessenberg, and dense TN matrices with prescribed eigenvalues. We first prepare an infinite sequence associated with distinct eigenvalues \(\lambda _{1},\lambda _{2},\dots ,\lambda _{m}\) and two integers M and N which determine the upper and lower bandwidths of m-by-m banded matrices, respectively. Both M and N play a key role for achieving our purpose. The study follows similar lines to our previous paper, but is complicated by the introduction of N. We next consider extended Hankel determinants and extended Hadamard polynomials involving elements of the infinite sequence and then derive their relationships. These relationships help us understand banded TN matrices with eigenvalues \(\lambda _{1},\lambda _{2},\dots ,\lambda _{m}\) from the viewpoint of an extension of the dhToda equation. Finally, we propose a finite-step procedure for constructing TN matrices with an arbitrary upper and lower bandwidths and prescribed eigenvalues and also give illustrative examples.


Extended discrete hungry Toda equation Finite-step construction Inverse eigenvalue problem Totally nonnegative 

Mathematics Subject Classifications (2010)

65F18 15A48 37N30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akaiwa, K., Nakamura, Y., Iwasaki, M., Tsutsumi, H., Kondo, K.: A finite-step construction of totally nonnegative matrices with specified eigenvalues. Numer. Algor. 70, 469–484 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chu, M.T., Golub, G.H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications. Oxford Univ. Press, New York (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fallat, S.: Bidiagonal factorizations of totally nonnegative matrices. Amer. Math. Monthly 108, 697–712 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fallat, S., Gekhtman, M.I.: Jordan structures of totally nonnegative matrices. Canad. J. Math. 57, 82–98 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fallat, S.M., Johnson, C.R.: Totally Nonnegative Matrices. Princeton Univ. Press, Princeton (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fukuda, A., Ishiwata, E., Yamamoto, Y., Iwasaki, M., Nakamura, Y.: Integrable discrete hungry systems and their related matrix eigenvalues. Annal. Mat. Pura Appl. 192, 423–445 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gasca, M., Micchelli, C.A. (eds.): Total Positivity and Its Applications. Kluwer Academic, Dordrecht (1996)Google Scholar
  9. 9.
    Gladwell, G.M.L.: Inner totally positive matrices. Linear Algebra Appl. 393, 179–195 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    The GNU Multiple Precision Arithmetic Library,
  11. 11.
    The GNU MPFR Library,
  12. 12.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins Univ. Press, Baltimore (2013)Google Scholar
  13. 13.
    Henrici, P.: Applied and Computational Complex Analysis, vol. 1. John Wiley, New York (1974)zbMATHGoogle Scholar
  14. 14.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)Google Scholar
  15. 15.
    Hirota, R.: The direct method in soliton theory. Cambridge Univ. press (2004)Google Scholar
  16. 16.
    In: Hogben, L. (ed.) : Handbook of Linear Algebra, 2nd edn. CRC Press (2014)Google Scholar
  17. 17.
    Iwasaki, M., Nakamura, Y.: On the convergence of a solution of the discrete Lotka-Volterra system. Inverse Probl. 18, 1569–1578 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Karlin, S.: Total Positivity, vol. 1. Stanford Univ. Press, Redwood city (1968)zbMATHGoogle Scholar
  19. 19.
  20. 20.
    Pinkus, A.: Totally Positive Matrices. Cambridge Univ. Press, New York (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Press, W.H., Vetterling, W.T., Teukolsky, S.A., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge Univ. Press, Cambridge (1992)Google Scholar
  22. 22.
    Rutishauser, H.: Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit Hilfe des Quotienten-Differenzen-Algorithmus. Z. Angew. Math. Phys. 6, 387–401 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yamamoto, Y., Fukaya, T.: Differential qd algorithm for totally nonnegative band matrices: convergence properties and error analysis. JSIAM Letters 1, 56–59 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tokihiro, T., Nagai, A., Satsuma, J.: Proof of solitonical nature of box and ball system by the means of inverse ultra-discretization. Inverse Probl. 15, 1639–1662 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhang, W., Higham, N.J.: Matrix Depot: An extensible test matrix collection for Julia. Peer J Comput. Sci. 2:e58 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kanae Akaiwa
    • 1
    • 4
    Email author
  • Yoshimasa Nakamura
    • 1
  • Masashi Iwasaki
    • 2
  • Akira Yoshida
    • 3
  • Koichi Kondo
    • 3
  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan
  2. 2.Department of Informatics and Environmental ScienceKyoto Prefectural UniversityKyotoJapan
  3. 3.Graduate School of Science and EngineeringDoshisha UniversityKyotanabe CityJapan
  4. 4.Faculty of Computer Science and EngineeringKyoto Sangyo UniversityKyotoJapan

Personalised recommendations