Numerical Algorithms

, Volume 75, Issue 1, pp 81–92 | Cite as

Total variation reconstruction from quadratic measurements

Original Paper


In this paper, we consider a problem of reconstructing an image from incomplete quadratic measurements by minimizing its total variation. The problem of reconstructing an object from incomplete nonlinear acquisitions arises in many applications, such as astronomical imaging or depth reconstruction. Placing ourselves in a discrete setting, we provide theoretical guarantees for stable and robust image recovery from incomplete noisy quadratic measurements.


Total variation Phase retrieval Image recovery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Back, A., Eldar, Y.: Sparsity constrained nonlinear optimization: optiMality conditions and algorithms. SIAM J. Optimization 23, 1480–1509 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beck, C., D’Andrea, R.: Computational study and comparisons of LFT reducibility methods. Proc. of the American Control Conf. 2, 1013–1017 (1998)Google Scholar
  3. 3.
    Ben-Tal, A., Nemirovski, A.S.: Lectures on modern convex optimization: analysis, algorithms, and engineer- ing applications. MPS-SIAM series on optimization Society for Industrial and Applied Mathematics (2001)Google Scholar
  4. 4.
    Candes, E., Eldar, Y., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J.Imaging Sci. 6, 199–225 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Candès, E., Tao, T., Romberg, J.: Robust uncertainty principles : Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52, 489–509 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cohen, A., DeVore, R., Petrushev, P., Xu, H.: Nonlinear approximation and the space \({BV}(\mathbb {R}^{2})\). Am. J. of Math. 121, 587–628 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fazel, M.: Matrix Rank Minimization with Applications. PhD thesis, Stanford University (2002)Google Scholar
  8. 8.
    Fienup, J.R.: Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978)CrossRefGoogle Scholar
  9. 9.
    Krahmer, F., Ward, R.: Stable and robust sampling strategies for compressive imaging. IEEE Trans. on Im. Proc. 23(2), 612–622 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mesbahi, M., Papavassilopoulos, G.: On the rank minimization problem over a positive semidefinite linear matrix inequality. IEEE Trans. Automat. Contr. 42(2), 239–243 (1997)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Needell, D., Ward, R.: Stable image reconstruction using total variation minimization. SIAM J. Imaging Sci. 6, 1035–1058 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ohlsson, H., Yang, A., Dong, R., Verhaegen, M., Sastry, S.: Quadratic Basis Pursuit, Regularization, Optimization, Kernels, and Support Vector Machines, Chapman Hall (2014)Google Scholar
  13. 13.
    Rauhut, H.: Compressive Sensing and Structured Random Matrices. Theoretical Foundations and Numerical Methods for Sparse Recovery, 9, Radon Series Comp. Appl. Math., 1–92 (2010)Google Scholar
  14. 14.
    Shechtman, Y., Eldar, Y., Cohen, O., Chapman, H., Miao, J., Segev, M.: Phase Retrieval with Application to Optical Imaging: A contemporary overview. IEEE Signal Processing Mag. 32, 87–109 (2015)CrossRefGoogle Scholar
  15. 15.
    Shechtman, Y., Eldar, Y., Szameit, A., Segev, M.: Sparsity based Sub-Wavelength imaging with partially incoherent light via quadratic compressed sensing. Opt. Express 19, 14807–14822 (2011)CrossRefGoogle Scholar
  16. 16.
    Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory de Mathématiques de l’INSA - LMI (EA 3226 - FR CNRS 3335)INSA de Rouen, Normandie UniversitéSt-Étienne-du-Rouvray’France

Personalised recommendations