Skip to main content
Log in

Variants of the groupwise update strategy for short-recurrence Krylov subspace methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Krylov subspace methods often use short-recurrences for updating approximations and the corresponding residuals. In the bi-conjugate gradient (Bi-CG) type methods, rounding errors arising from the matrix–vector multiplications used in the recursion formulas influence the convergence speed and the maximum attainable accuracy of the approximate solutions. The strategy of a groupwise update has been proposed for improving the convergence of the Bi-CG type methods in finite-precision arithmetic. In the present paper, we analyze the influence of rounding errors on the convergence properties when using alternative recursion formulas, such as those used in the bi-conjugate residual (Bi-CR) method, which are different from those used in the Bi-CG type methods. We also propose variants of a groupwise update strategy for improving the convergence speed and the accuracy of the approximate solutions. Numerical experiments demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, K., Sleijpen, G.L.G.: BiCR variants of hybrid BiCG methods for solving linear systems with nonsymmetric matrices. J. Comput. Appl. Math. 234, 985–994 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abe, K., Sleijpen, G.L.G.: Hybrid Bi-CG methods with a Bi-CG formulation closer to the IDR approach. Appl. Math. Comput. 218, 10889–10899 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Aihara, K., Abe, K., Ishiwata, E.: A variant of IDRstab with reliable update strategies for solving sparse linear systems. J. Comput. Appl. Math. 259, 244–258 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davis, T.: The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices/

  5. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20, 345–357 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fletcher, R.: Conjugate gradient methods for indefinite systems. Lect. Notes Math. 506, 73–89 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  8. Greenbaum, A.: Estimating the attainable accuracy of recursively computed residual methods. SIAM J. Matrix Anal. Appl. 18, 535–551 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gutknecht, M.H., Rozložnik, M.: Residual smoothing techniques: do they improve the limiting accuracy of iterative solvers? BIT 41, 86–114 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiránek, P., Rozložnik, M., Gutknecht, M.H.: How to make simpler GMRES and GCR more stable. SIAM J. Matrix Anal. Appl. 30, 1483–1499 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Joubert, W.: Lanczos methods for the solution of nonsymmetric systems of linear equations. SIAM J. Matrix Anal. Appl. 13, 926–943 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Murata, Y., Aihara, K., Abe, K., Ishiwata, E.: Product-type methods with an alternative computation of the BiCR coefficients. Trans. Japan. Soc. Indust. Appl. Math. 23, 417–437 (2013). (in Japanese)

    Google Scholar 

  14. Paige, C.C., Saunders, M.A.: Solutions of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sleijpen, G.L.G., Sonneveld, P., van Gijzen, M.B.: Bi-CGSTAB as an induced dimension reduction method. Appl. Numer. Math. 60, 1100–1114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sleijpen, G.L.G., van der Vorst, H.A.: Maintaining convergence properties of BiCGstab methods in finite precision arithmetic. Numer. Algorithms 10, 203–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sleijpen, G.L.G., van der Vorst, H.A.: Reliable updated residuals in hybrid Bi-CG methods. Computing 56, 141–163 (1996)

  18. Sleijpen, G.L.G., van der Vorst, H.A., Fokkema, D.R.: BiCGstab() and other hybrid Bi-CG methods. Numer. Algorithms 7, 75–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sogabe, T., Sugihara, M., Zhang, S.-L.: An extension of the conjugate residual method to nonsymmetric linear systems. J. Comput. Appl. Math. 226, 103–113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 10, 36–52 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. van den Eshof, J., Sleijpen, G.L.G.: Inexact Krylov subspace methods for linear systems. SIAM J. Matrix Anal. Appl. 26, 125–153 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. van der Vorst, H.A., Ye, Q.: Residual replacement strategies for Krylov subspace iterative methods for the convergence of true residuals. SIAM J. Sci. Comput. 22, 835–852 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vinsome, P.K.W.: Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In: Proc. Fourth Symposium of Reservoir Simulation, Society of Petroleum Engineers of AIME, pp. 149–159 (1976)

  25. Young, D.M., Jea, K.C.: Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods. Linear Algebra Appl. 34, 159–194 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Aihara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aihara, K. Variants of the groupwise update strategy for short-recurrence Krylov subspace methods. Numer Algor 75, 397–412 (2017). https://doi.org/10.1007/s11075-016-0183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0183-y

Keywords

Mathematics Subject Classifications (2010)

Navigation