Skip to main content
Log in

A modified greedy analysis pursuit algorithm for the cosparse analysis model

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the past decade, the sparse representation synthesis model has been deeply researched and widely applied in signal processing. Recently, a cosparse analysis model has been introduced as an interesting alternative to the sparse representation synthesis model. The sparse synthesis model pay attention to non-zero elements in a representation vector x, while the cosparse analysis model focuses on zero elements in the analysis representation vector Ωx. This paper mainly considers the problem of the cosparse analysis model. Based on the greedy analysis pursuit algorithm, by constructing an adaptive weighted matrix W k−1, we propose a modified greedy analysis pursuit algorithm for the sparse recovery problem when the signal obeys the cosparse model. Using a weighted matrix, we fill the gap between greedy algorithm and relaxation techniques. The standard analysis shows that our algorithm is convergent. We estimate the error bound for solving the cosparse analysis model, and then the presented simulations demonstrate the advantage of the proposed method for the cosparse inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer Press (2010)

  3. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press (2008)

  4. Starck, J.L., Murtagh, F., Fadili, M.J.: Sparse Image and Signal Processing-Wavelets, Curvelets, Morphological Diversity. Cambridge University Press (2010)

  5. Nam, S., Davies, M.E., Elad, M., Gribonval, R.: The cosparse analysis model and algorithms. Appl. Comput. Harmon. Anal. 34, 30–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haim, Z.B., Eldar, Y.C., Elad, M.: Coherence-based performance guarantees for estimating a sparse vector under random noise. IEEE Trans. Signal Process. 58, 5030–5043 (2010)

    Article  MathSciNet  Google Scholar 

  7. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proc. Natl. Acad. Sci. USA 100, 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inform. Theory 49, 3320–3325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tropp, J.A.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50, 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tropp, J.A.: Just relax: Convex programming methods for subset selection and sparse approximation. IEEE Trans. Inform. Theory 51, 1030–1051 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candès, E.J., Tao, T.: The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35, 2313–2351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory 55, 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  14. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)

    Article  MATH  Google Scholar 

  15. Aharon, M., Elad, M., Bruckstein, A.M.: K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  16. Engan, K., Aase, S.O., Husoy, J.H.: Multi-frame compression: Theory and design. Signal Process. 80, 2121–2140 (2000)

    Article  MATH  Google Scholar 

  17. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Skretting, K., Engan, K.: Recursive least squares dictionary learning algorithm. IEEE Trans. Signal Process. 58, 2121–2130 (2010)

    Article  MathSciNet  Google Scholar 

  19. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  20. Elad, M., Starck, J.L., Querre, P., Donoho, D.L.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl. Comput. Harmon. Anal. 19, 340–358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Casanovas, A.L., Monaci, G., Vandergheynst, P., Gribonval, R.: Blind audiovisual source separation based on sparse representations. IEEE Trans. Multimedia 12, 358–371 (2010)

    Article  Google Scholar 

  22. Plumbley, M.D., Blumensath, T., Daudet, L., Gribonval, R., Davies, M.E.: Sparse representations in audio and music: from coding to source separation. Proc. IEEE 98, 995–1005 (2010)

    Article  Google Scholar 

  23. Nam, S., Davies, M., Elad, M., Gribonval, R.: Cosparse analysis modeling-uniqueness and algorithms. In: IEEE International Conference on Acoustics. Speech and Signal Processing, ICASSP, p. 2011, Prague, Czech Republic (2011)

  24. Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Prob. 23, 947–968 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Portilla, J.: Image restoration through 0 analysis-based sparse optimization in tight frames. In: Proceedings of the 16th IEEE International Conference on Image Processing, pp. 3865–3868 (2009)

  26. Selesnick, I.W., Figueiredo, M.A.T.: Signal restoration with overcomplete wavelet transforms: Comparison of analysis and synthesis priors. In: Proceedings of SPIE. (Wavelets XIII) (2009)

  27. Cai, J.F., Osher, S., Shen, Z.: Split bregman methods and frame based image restoration. Multiscale Model. Simul. 8, 337–369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Candès, E.J., Eldar, Y.C., Needell, D., Randall, P.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31, 59–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: Universal encoding strategies. IEEE Trans. Inform. Theory 52, 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Giryes, R., Nam, S., Elad, M., Gribonval, R., Davies, M.E.: Greedy-like algorithms for the cosparse analysis model. Linear Algebra Appl. 441, 22–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu, Y.M., Do, M.N.: Sampling signals from a union of subspaces. IEEE Signal Proc. Mag. 56, 41–47 (2008)

    Article  MathSciNet  Google Scholar 

  32. Blumensath, T., Davies, M.E.: Sampling theorems for signals from the union of finite dimensional linear subspaces. IEEE Trans. Inform. Theory 55, 1872–1882 (2009)

    Article  MathSciNet  Google Scholar 

  33. Lu, Y.M., Do, M.N.: A theory for sampling signals from a union of subspaces. IEEE Trans. Signal Process. 56, 2334–2345 (2008)

    Article  MathSciNet  Google Scholar 

  34. Foucart, S., Lai, M.: Sparsest solutions of underdetermined linear systems via q -minimization for 0 < q ≤ 1. Appl. Comput. Harmonic Anal. 26, 395–407 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chartrand, R., Staneva, V.: Restricted isometry properties and nonconvex compressive sensing. Inverse Prob. 24, 1–14 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saab, R., Chartrand, R., Yilmaz, O.: Stable sparse approximations via nonconvex optimization. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3885–3888 (2008)

  37. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14, 707–710 (2007)

    Article  Google Scholar 

  38. Xu, Z., Zhang, H., Wang, Y., Chang, X., Liang, Y.: L 1/2 regularization. Sci. China Inf. Sci. 53, 1159–1169 (2010)

    Article  MathSciNet  Google Scholar 

  39. Xu, Z., Guo, H., Wang, Y., Zhang, H.: The representative of L 1/2 regularization among q (0 < q ≤ 1) regularizations: An experimental study based on phase diagram. Acta Autom. Sinica 38, 1225–1228 (2012)

    Google Scholar 

  40. Li, J., Liu, Z., Li, W.: The reweighed greedy analysis pursuit algorithm for the cosparse analysis model. In: The 2015 11th International Conference on Natural Computation (ICNC’15), pp. 1018–1022. IEEE (2015)

  41. Raguet, H., Fadili, J., Peyré, G.: A Generalized forward-backward splitting. SIAM J. Imag. Sci. 6, 1199–1226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: A re-weighted norm minimization algorithm. IEEE Trans. Signal Process. 45, 600–616 (1997)

    Article  Google Scholar 

  43. Grant, M., Boyd, S., Ye, Y.: CVX: Matlab Software for Disciplined Convex Programming (2008)

  44. Vaiter, S., Peyre, G., Dossal, C., Fadili, J.: Robust sparse analysis regularization. IEEE Trans. Inform. Theory 59, 2001–2016 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Peleg, T., Elad, M.: Performance guarantees of the thresholding algorithm for the cosparse analysis model. IEEE Trans. Inform. Theory 59, 1832–1845 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, J., Li, W. et al. A modified greedy analysis pursuit algorithm for the cosparse analysis model. Numer Algor 74, 867–887 (2017). https://doi.org/10.1007/s11075-016-0174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0174-z

Keywords

Mathematics Subject Classification (2010)

Navigation