Skip to main content
Log in

Multilevel hybrid split-step implicit tau-leap

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript


In biochemically reactive systems with small copy numbers of one or more reactant molecules, the dynamics is dominated by stochastic effects. To approximate those systems, discrete state-space and stochastic simulation approaches have been shown to be more relevant than continuous state-space and deterministic ones. In systems characterized by having simultaneously fast and slow timescales, existing discrete space-state stochastic path simulation methods, such as the stochastic simulation algorithm (SSA) and the explicit tau-leap (explicit-TL) method, can be very slow. Implicit approximations have been developed to improve numerical stability and provide efficient simulation algorithms for those systems. Here, we propose an efficient Multilevel Monte Carlo (MLMC) method in the spirit of the work by Anderson and Higham (SIAM Multiscal Model. Simul. 10(1), 2012). This method uses split-step implicit tau-leap (SSI-TL) at levels where the explicit-TL method is not applicable due to numerical stability issues. We present numerical examples that illustrate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Abdulle, A., Cirilli, S.: Stabilized methods for stiff stochastic systems. Compt. R. Math. 345(10), 593–598 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Abdulle, A., Cirilli, S.: S-rock: Chebyshev methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 30(2), 997–1014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdulle, A., Hu, Y., Li, T.: Chebyshev methods with discrete noise: the tau-rock methods. J. Comput. Math. 28(2), 195–217 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Abdulle, A., Li, T.: S-rock methods for stiff Ito sdes. Commun. Math Sci. 6(4), 845–868, 12 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ahn, T., Sandu, A., Han, X.: Implicit simulation methods for stochastic chemical kinetics. CoRR, arXiv:1303.3614 (2013)

  6. Anderson, D., Higham, D.: Multilevel Monte Carlo for continuous Markov chains, with applications in biochemical kinetics. SIAM Multiscal Model. Simul. 10 (1) (2012)

  7. Anderson, D.F.: A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J. Chem. Phys. 127(21), 214107 (2007)

    Article  Google Scholar 

  8. Anderson, D.F.: Incorporating postleap checks in tau-leaping. J. Chem. Phys. 128(5), 054103 (2008)

    Article  Google Scholar 

  9. Anderson, D.F., Ganguly, A., Kurtz, T.G.: Error analysis of tau-leap simulation methods. The Annals of Applied Probability, 2226–2262 (2011)

  10. Anderson, D.F., Higham, D.J., Sun, Y.: Complexity of multilevel Monte Carlo tau-leaping. SIAM J. Numer. Anal. 52(6), 3106–3127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Anderson, D.F., Kurtz, T.G.: Stochastic analysis of biochemical systems. Springer (2015)

  12. Brauer, F., Castillo-Chavez, C.: Mathematical models in population biology and epidemiology (texts in applied mathematics), 2nd edn. Springer (2011)

  13. Cinlar, E.: Probability and stochastics, volume 261 of Graduate texts in Mathematics. Springer (2011)

  14. Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit Poisson tau-leaping. J. Chem. Phys. 123(5), 054104+ (2005)

    Article  Google Scholar 

  15. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124(4), 044109 (2006)

    Article  Google Scholar 

  16. Cao, Y., Petzold, L.: Trapezoidal tau-leaping formula for the stochastic simulation of biochemical systems. In: Foundations of Systems Biology in Engineering (FOSBE), pp 149–152 (2005)

  17. Cao, Y., Petzold, L., Rathinam, M., Gillespie, D.: The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. J. Chem Phys. 121(24), 12169–12178, 22 (2004)

    Article  Google Scholar 

  18. Collier, N., Haji-Ali, A.-L., Nobile, F., von Schwerin, E., Tempone, R.: A continuation multilevel Monte Carlo algorithm. BIT Numer. Math. 55(2), 399–432 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duffie, D., Glynn, P.: Efficient Monte Carlo simulation of security prices. Annals of Applied Probability, 897–905 (1995)

  20. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, New York (1993)

    Book  MATH  Google Scholar 

  21. Engblom, S.: On the stability of stochastic jump kinetics. Appl. Math. 5, 3217–3239 (2014)

    Article  Google Scholar 

  22. Ethier, S.N., Kurtz, T.G.: Markov Processes: characterization and convergence (Wiley Series in Probability and Statistics), 2nd edn., vol. 9. Wiley-Interscience (2005)

  23. Giles, M.: Multi-level Monte Carlo path simulation. Oper. Res. 53(3), 607–617 (2008)

    Article  MATH  Google Scholar 

  24. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  25. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716–1733 (2001)

    Article  Google Scholar 

  26. Gupta, A., Briat, C., Khammash, M.: A scalable computational framework for establishing long-term behavior of stochastic reaction networks, vol. 10 (2014)

  27. Hensel, S., Rawlings, J., Yin, J.: Stochastic kinetic modeling of vesicular stomatitis virus intracellular growth. Bull. Math. Biol. 71(7), 1671–1692 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40(3), 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hu, Y., Li, T., Min, B.: The weak convergence analysis of tau-leaping methods: revisited. Communication Mathematics Science (2011)

  30. Aparicio, H.S.J.: Population dynamics: Poisson approximation and its relation to the Langevin process. Physical Review Letters, 4183 (2001)

  31. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (2011). corrected edition

    MATH  Google Scholar 

  32. Lester, C., Yates, C.A., Giles, M.B., Baker, R.E.: An adaptive multi-level simulation algorithm for stochastic biological systems. J. Chem. Phys. 142(2), 024113 (2015)

    Article  Google Scholar 

  33. Li, T.: Analysis of explicit tau-leaping schemes for simulating chemically reacting systems. Multiscale Model. Simul. 6(2), 417–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moraes, A., Tempone, R., Vilanova, P.: Hybrid Chernoff tau-leap. Multiscale Model. Simul. 12(2), 581–615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moraes, A., Tempone, R., Vilanova, P.: Multilevel adaptive reaction-splitting simulation method for stochastic reaction networks. preprint arXiv:1406.1989 (2015)

  36. Moraes, A., Tempone, R., Vilanova, P.: Multilevel hybrid Chernoff tau-leap. BIT Annals of Numerical Mathematics, 1–51 (2015)

  37. Rathinam, M.: Moment growth bounds on continuous time Markov processes on non-negative integer lattices. Q. Appl. Math. 73, 347–364 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rathinam, M.: Convergence of moments of tau leaping schemes for unbounded Markov processes on integer lattices. SIAM J. Numer. Anal. 54(1), 415–439 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rathinam, M., El-Samad, H.: Reversible-equivalent-monomolecular tau: a leaping method for “small number and stiff” stochastic chemical systems. J. Comput. Phys. 224(2), 897–923 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rathinam, M., Petzold, L., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119 (24), 12784–12794 (2003)

    Article  Google Scholar 

  41. Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Consistency and stability of tau-leaping schemes for chemical reaction systems. Multiscale Model. Simul. 4(3), 867–895 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  42. Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218(3), 309–321 (2002)

    Article  MathSciNet  Google Scholar 

  43. Tian, T., Burrage, K.: Binomial leap methods for simulating stochastic chemical kinetics. J. Chem Phys. 121(21), 10356–10364 (2004)

    Article  Google Scholar 

  44. Yang, Y., Rathinam, M., Shen, J.: Integral tau methods for stiff stochastic chemical systems. J. Chem. Phys. 134(4) (2011)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chiheb Ben Hammouda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Hammouda, C., Moraes, A. & Tempone, R. Multilevel hybrid split-step implicit tau-leap. Numer Algor 74, 527–560 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification (2010)