Advertisement

Numerical Algorithms

, Volume 74, Issue 2, pp 371–391 | Cite as

Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions

  • S. Amat
  • Ioannis K. Argyros
  • S. Busquier
  • Á. Alberto MagreñánEmail author
Original Paper

Abstract

We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study

Keywords

Jarratt-like method Banach space Local convergence Dynamics 

Mathematics Subject Classification (2010)

65D10 65D99 65G99 90C30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequat. Math. 69(3), 212–223 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366(1), 24–32 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206(1), 164–174 (2008)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Argyros, I.K.: Convergence and Application of Newton-type Iterations. Springer (2008)Google Scholar
  5. 5.
    Argyros, I.K., Hilout, S.: Numerical methods in Nonlinear Analysis. World Scientific Publication Computing, New Jersey (2013)Google Scholar
  6. 6.
    Argyros, I.K., Magreñán, Á.A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252, 336–346 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Behl, R.: Development and analysis of some new iterative methods for numerical solutions of nonlinear equations. (PhD Thesis) Punjab University (2013)Google Scholar
  8. 8.
    Bruns, D.D., Bailey, J.E.: Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32, 257–264 (1977)CrossRefGoogle Scholar
  9. 9.
    Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169–184 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: the Chebyshev method. Computing 45(4), 355–367 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chun, C.: Some improvements of Jarratt’s method with sixth-order convergence. Appl. Math. Comput. 190(2), 1432–1437 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Deghan, M.: Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations. Comput. Appl Math. 29(1), 19–30 (2010)Google Scholar
  14. 14.
    Deghan, M.: On derivative free cubic convergence iterative methods for solving nonlinear equations. Comput. Math. Math. Phys. 51(4), 513–519 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Deghan, M., Masoud, H.: Fourth-order variants of Newton’s method without second derivatives for solving non-linear equations. Eng. Comput. 29(4), 356–365 (2012)CrossRefGoogle Scholar
  16. 16.
    Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-type methods. Appl. Math. Optim. 41(2), 227–236 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ezquerro, J.A., Hernández, M.A.: On the R-order of the Halley method. J. Math. Anal. Appl. 303, 591–601 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36(7), 1–8 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ganesh, M., Joshi, M.C.: Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 21–31 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    González-Crespo, R., Ferro, R., Joyanes, L., Velazco, S., Castillo, A.G.: Use of ARIMA mathematical analysis to model the implementation of expert system courses by means of free software OpenSim and Sloodle platforms in virtual university campuses. Expert Syst. Appl. 40(18), 7381–7390 (2013)CrossRefGoogle Scholar
  22. 22.
    Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3-4), 433–455 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hernández, M.A., Salanova, M.A.: Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math. 1, 29–40 (1999)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Jarratt, P.: Some fourth order multipoint methods for solving equations. Math. Comput. 20(95), 434–437 (1966)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kou, J., Li, Y.: An improvement of the Jarratt method. Appl. Math. Comput. 189, 1816–1821 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Kou, J., Wang, X.: Semilocal convergence of a modified multi-point Jarratt method in Banach spaces under general continuity conditions. Numer. Algor. 60, 369–390 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lorenzo, W., Crespo, R.G., Castillo, A.: A prototype for linear features generalization. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 (2010)Google Scholar
  28. 28.
    Magreñán, Á.A.: Different anoMalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Magreñán, Á.A., Some fourth order multipoint methods for solving equations: Appl. Math. Comput. 248, 215–224 (2014)MathSciNetGoogle Scholar
  30. 30.
    Parhi, S.K., Gupta, D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206(2), 873–887 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Rall, L.B.: Computational solution of nonlinear operator equations. Robert E. Krieger, New York (1979)Google Scholar
  32. 32.
    Ren, H., Wu, Q., Bi, W.: New variants of Jarratt method with sixth-order convergence. Numer. Algor. 52(4), 585–603 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 (1978)Google Scholar
  34. 34.
    Sicilia, J.A., Quemada, C., Royo, B., Escuín, D.: An optimization algorithm for solving the rich vehicle routing problem based on Variable Neighborhood Search and Tabu Search metaheuristics. J. Comput. Appl. Math. 291, 468–477 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Traub, J.F.: Iterative methods for the solution of equations. Prentice- Hall Series in Automatic Computation, Englewood Cliffs, NJ (1964)Google Scholar
  36. 36.
    Wang, X., Kou, J., Gu, C.: Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algor. 57, 441–456 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. Amat
    • 1
  • Ioannis K. Argyros
    • 2
  • S. Busquier
    • 1
  • Á. Alberto Magreñán
    • 3
    Email author
  1. 1.Departamento de Matemática Aplicada y EstadísticaUniversidad Politécnica de CartagenaCartagenaSpain
  2. 2.Department of Mathematics SciencesCameron UniversityLawtonUSA
  3. 3.Escuela de IngenieríaUniversidad Internacional de La RiojaLogroñoSpain

Personalised recommendations