Numerical Algorithms

, Volume 73, Issue 4, pp 1091–1106 | Cite as

Chipot’s method for a one-dimensional Kirchhoff static equation

  • N. KachakhidzeEmail author
  • N. Khomeriki
  • J. Peradze
  • Z. Tsiklauri
Original Paper


The paper deals with a method of solution of a nonlinear integro-differential static string equation. The accuracy of the method is discussed. The numerical examples are given.


Kirchhoff string equation Chipot’s method Numerical algorithm Error estimate 

Mathematics Subject Classification (2010)

65L10 65L70 74K05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames, W.F.: Non-linear partial differential equations in engineering. Academic Press, New York (1965)zbMATHGoogle Scholar
  2. 2.
    Arosio, A.: Averaged evolution equations, the Kirchhoff string and its treatment in scales of Banach spaces. In: Proceedings of the Functional Analytic Methods in Complex Analysis and Applications to Partial Differential Equations, Trieste, International Centre for Theoretical Physics, Italy, pp 220–254 (1993)Google Scholar
  3. 3.
    Argyros, I.K., Hilout, S.: Weaker convergence conditions for the secant method. Appl. Math. 59, 265–284 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Argyros, I.K.: On the secant method for solving nonsmooth equations. J. Math. Anal. Appl. 322(1), 146–157 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Attigui, F.: Contrôle et stabilisation de câbles non linéaires. Repport de stage scientifique, Laboratoire des Matériaux et des Structures du Génie Civil Université Paris XIII, Paris, France (1999)Google Scholar
  6. 6.
    Bernstein, S.: On a class of functional partial differential equations. Bull. Acad. Sci. URSS, Sér. Math. (Izvestia Akad. Nauk SSSR) 4, 17–26 (1940). (in Russian)Google Scholar
  7. 7.
    Bilbao, S.: Modal-type synthesis techniques for non-linear strings with an energy conservation property. In: Proceedings of the International Conference on Digital Audio Effects (DAFx04), Naples, Italy, pp 119–124 (2004)Google Scholar
  8. 8.
    Burgreen, D.: Free vibration of a pin ended column with constant distance between ends. J. Appl. Mech. 18, 135–139 (1951)Google Scholar
  9. 9.
    Carrier, G.F.: On the non-linear vibration problem of the elastic string. Quart. Appl. Math. 3, 157–165 (1945)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chipot, M., Rodrigues, J.-F.: On a class of non-local non-linear elliptic problems. RAIRO Modél Math. Anal. Numér. 26, 447–467 (1992)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Chipot, M.: Elements of Non-linear Analysis (Birkhäuser Verlag, Basel, Boston Berlin (2001)Google Scholar
  12. 12.
    Chipot, M.: Remarks on some class of non-local elliptic problems. In: Recent advances of elliptic and parabolic issues, World Scientific, pp 79–102 (2006)Google Scholar
  13. 13.
    Christie, I., Sanz-Serna, J.M.: A Galerkin method for a non-linear integro-differential wave system. Comput. Methods Appl. Mech. Engrg. 44, 229–237 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dickey, R.W.: Infinite systems of non-linear oscillation equations related to the string. Proc. Amer. Math. Soc. 23, 459–468 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Diez, P.: A note on the convergence of the secant method for simple and multiple roots. Appl. Math. Lett 16, 1211–1215 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Eringen, A.C.: On the non-linear vibration of elastic bars. Quart. Appl. Math. 9, 361–369 (1952)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gudi, T.: Finite element method for a non-local problem of Kirchhoff type. SIAM J. Numer. Anal. 50(2), 657–668 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    He, X., Zou, W.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlin. Anal. 70, 1407–1414 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hongmin, R., Qingbiao, W.: The convergence ball of the secant method under Hölder conditions divided differences. J. Comput. Appl. Math. 194(2), 284–293 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jacobson, N.: Basic algebra Second edition (Dover, 2009)Google Scholar
  21. 21.
    Kauderer, H.: Nichtlineare mechanik. Springer, Berlin (1958)CrossRefzbMATHGoogle Scholar
  22. 22.
    Kirchhoff, G.: Vorlesungen über Mechanik. Teubner, Leipzig (1876)zbMATHGoogle Scholar
  23. 23.
    Liu, I.S., Rincon, M.A.: Effect of moving boundaries on the vibrating elastic string. Appl. Numer. Math. 47, 159–172 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ma, T.F.: Remarks on an elliptic equation of Kirchhoff type. Nonlin. Anal. 63, 1967–1977 (2005)CrossRefGoogle Scholar
  25. 25.
    Ma, T.F.: Existence results for a model of non-linear beam on elastic bearings. Appl. Math. Lett. 13, 11–15 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ma, T.F., Miranda, E.S., de Souza Cortes, M.B.: A non-linear differential equation involving reflection of the argument. Arch. Math. (Brno) 40, 63–68 (2004)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Medeiros, L.A.: On a new class of non-linear wave equations. J. Math. Anal. Appl. 69, 252–262 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Nash, W.A., Modeer, J.R.: Certain approximate analyses of the nonlinear behavior of plates and shallow shells. In: Proc. Sympos. Thin Elastic Shells (Delft, 1959), North-Holland, pp 331–354 (1960)Google Scholar
  29. 29.
    Nayfeh, A.H., Mook, D.T.: Non-linear oscillations (Pure Appl. Math. Wiley-interscience (N.Y.) New York, 1979)Google Scholar
  30. 30.
    Oplinger, D.W.: Frequency response of a non-linear stretched string. J. Acoust. Soc. Amer. 32, 1529–1538 (1960)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Peradze, J.: A numerical algorithm for the non-linear Kirchhoff string equation. Numer. Math. 102, 311–342 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Peradze, J.: An approximate algorithm for a Kirchhoff wave equation. SIAM J. Numer. Anal. 47(3), 2243–2268 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics, 2nd edn. Springer, Berlin (2007)CrossRefzbMATHGoogle Scholar
  34. 34.
    Rogava, J., Tsiklauri, M.: On local convergence of a symmetric semi-discrete scheme for an abstract analogue of the Kirchhoff equation. J. Comp. Appl. Math. 236, 3654–3664 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sapir, M.H., Reiss, E.L.: Dynamic buckling of a non-linear Timoshenko beam. SIAM J. Appl. Math. 37, 290–301 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Stewart, G.W.: Afternotes on numerical analysis (SIAM, Philadelphia PA, 1996)Google Scholar
  37. 37.
    Tucsnak, M.: On an initial and boundary value problem for the non-linear Timoshenko beam. An. Acad. Brasil. Ciênc. 63, 115–125 (1991)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Vasconcellos, C.F.: On a nonlinear stationary problem in unbounded domains. Rev. Mat. Univ. Complut. Madrid 5(2-3), 309–318 (1992)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Wah, T.: Large amplitude flexural vibration of rectangular plates. Int. J. Mech. Sci 5, 425–438 (1963)CrossRefGoogle Scholar
  40. 40.
    Woinowsky-Krieger, S.: The effect of an axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. Kachakhidze
    • 1
    Email author
  • N. Khomeriki
    • 1
  • J. Peradze
    • 1
    • 2
  • Z. Tsiklauri
    • 1
  1. 1.Department of MathematicsGeorgian Technical UniversityTbilisiGeorgia
  2. 2.Department of MathematicsTbilisi State UniversityTbilisiGeorgia

Personalised recommendations