Skip to main content
Log in

Chipot’s method for a one-dimensional Kirchhoff static equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The paper deals with a method of solution of a nonlinear integro-differential static string equation. The accuracy of the method is discussed. The numerical examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ames, W.F.: Non-linear partial differential equations in engineering. Academic Press, New York (1965)

    MATH  Google Scholar 

  2. Arosio, A.: Averaged evolution equations, the Kirchhoff string and its treatment in scales of Banach spaces. In: Proceedings of the Functional Analytic Methods in Complex Analysis and Applications to Partial Differential Equations, Trieste, International Centre for Theoretical Physics, Italy, pp 220–254 (1993)

  3. Argyros, I.K., Hilout, S.: Weaker convergence conditions for the secant method. Appl. Math. 59, 265–284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Argyros, I.K.: On the secant method for solving nonsmooth equations. J. Math. Anal. Appl. 322(1), 146–157 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attigui, F.: Contrôle et stabilisation de câbles non linéaires. Repport de stage scientifique, Laboratoire des Matériaux et des Structures du Génie Civil Université Paris XIII, Paris, France (1999)

  6. Bernstein, S.: On a class of functional partial differential equations. Bull. Acad. Sci. URSS, Sér. Math. (Izvestia Akad. Nauk SSSR) 4, 17–26 (1940). (in Russian)

    Google Scholar 

  7. Bilbao, S.: Modal-type synthesis techniques for non-linear strings with an energy conservation property. In: Proceedings of the International Conference on Digital Audio Effects (DAFx04), Naples, Italy, pp 119–124 (2004)

  8. Burgreen, D.: Free vibration of a pin ended column with constant distance between ends. J. Appl. Mech. 18, 135–139 (1951)

    Google Scholar 

  9. Carrier, G.F.: On the non-linear vibration problem of the elastic string. Quart. Appl. Math. 3, 157–165 (1945)

    MathSciNet  MATH  Google Scholar 

  10. Chipot, M., Rodrigues, J.-F.: On a class of non-local non-linear elliptic problems. RAIRO Modél Math. Anal. Numér. 26, 447–467 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Chipot, M.: Elements of Non-linear Analysis (Birkhäuser Verlag, Basel, Boston Berlin (2001)

  12. Chipot, M.: Remarks on some class of non-local elliptic problems. In: Recent advances of elliptic and parabolic issues, World Scientific, pp 79–102 (2006)

  13. Christie, I., Sanz-Serna, J.M.: A Galerkin method for a non-linear integro-differential wave system. Comput. Methods Appl. Mech. Engrg. 44, 229–237 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dickey, R.W.: Infinite systems of non-linear oscillation equations related to the string. Proc. Amer. Math. Soc. 23, 459–468 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diez, P.: A note on the convergence of the secant method for simple and multiple roots. Appl. Math. Lett 16, 1211–1215 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eringen, A.C.: On the non-linear vibration of elastic bars. Quart. Appl. Math. 9, 361–369 (1952)

    MathSciNet  MATH  Google Scholar 

  17. Gudi, T.: Finite element method for a non-local problem of Kirchhoff type. SIAM J. Numer. Anal. 50(2), 657–668 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, X., Zou, W.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlin. Anal. 70, 1407–1414 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hongmin, R., Qingbiao, W.: The convergence ball of the secant method under Hölder conditions divided differences. J. Comput. Appl. Math. 194(2), 284–293 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jacobson, N.: Basic algebra Second edition (Dover, 2009)

  21. Kauderer, H.: Nichtlineare mechanik. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  22. Kirchhoff, G.: Vorlesungen über Mechanik. Teubner, Leipzig (1876)

    MATH  Google Scholar 

  23. Liu, I.S., Rincon, M.A.: Effect of moving boundaries on the vibrating elastic string. Appl. Numer. Math. 47, 159–172 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, T.F.: Remarks on an elliptic equation of Kirchhoff type. Nonlin. Anal. 63, 1967–1977 (2005)

    Article  Google Scholar 

  25. Ma, T.F.: Existence results for a model of non-linear beam on elastic bearings. Appl. Math. Lett. 13, 11–15 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, T.F., Miranda, E.S., de Souza Cortes, M.B.: A non-linear differential equation involving reflection of the argument. Arch. Math. (Brno) 40, 63–68 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Medeiros, L.A.: On a new class of non-linear wave equations. J. Math. Anal. Appl. 69, 252–262 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nash, W.A., Modeer, J.R.: Certain approximate analyses of the nonlinear behavior of plates and shallow shells. In: Proc. Sympos. Thin Elastic Shells (Delft, 1959), North-Holland, pp 331–354 (1960)

  29. Nayfeh, A.H., Mook, D.T.: Non-linear oscillations (Pure Appl. Math. Wiley-interscience (N.Y.) New York, 1979)

  30. Oplinger, D.W.: Frequency response of a non-linear stretched string. J. Acoust. Soc. Amer. 32, 1529–1538 (1960)

    Article  MathSciNet  Google Scholar 

  31. Peradze, J.: A numerical algorithm for the non-linear Kirchhoff string equation. Numer. Math. 102, 311–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Peradze, J.: An approximate algorithm for a Kirchhoff wave equation. SIAM J. Numer. Anal. 47(3), 2243–2268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics, 2nd edn. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  34. Rogava, J., Tsiklauri, M.: On local convergence of a symmetric semi-discrete scheme for an abstract analogue of the Kirchhoff equation. J. Comp. Appl. Math. 236, 3654–3664 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sapir, M.H., Reiss, E.L.: Dynamic buckling of a non-linear Timoshenko beam. SIAM J. Appl. Math. 37, 290–301 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stewart, G.W.: Afternotes on numerical analysis (SIAM, Philadelphia PA, 1996)

  37. Tucsnak, M.: On an initial and boundary value problem for the non-linear Timoshenko beam. An. Acad. Brasil. Ciênc. 63, 115–125 (1991)

    MathSciNet  MATH  Google Scholar 

  38. Vasconcellos, C.F.: On a nonlinear stationary problem in unbounded domains. Rev. Mat. Univ. Complut. Madrid 5(2-3), 309–318 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Wah, T.: Large amplitude flexural vibration of rectangular plates. Int. J. Mech. Sci 5, 425–438 (1963)

    Article  Google Scholar 

  40. Woinowsky-Krieger, S.: The effect of an axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kachakhidze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachakhidze, N., Khomeriki, N., Peradze, J. et al. Chipot’s method for a one-dimensional Kirchhoff static equation. Numer Algor 73, 1091–1106 (2016). https://doi.org/10.1007/s11075-016-0131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0131-x

Keywords

Mathematics Subject Classification (2010)

Navigation