Skip to main content

The solution of the linear complementarity problem by the matrix analogue of the accelerated overrelaxation iterative method

Abstract

The Linear Complementarity Problem (LCP), with an H +−matrix coefficient, is solved by using the new “(Projected) Matrix Analogue of the AOR (MAAOR)” iterative method; this new method constitutes an extension of the “Generalized AOR (GAOR)” iterative method. In this work two sets of convergence intervals of the parameters involved are determined by the theories of “Perron-Frobenius” and of “Regular Splittings”. It is shown that the intervals in question are better than any similar convergence intervals found so far by similar iterative methods. A deeper analysis reveals that the “best” values of the parameters involved are those of the (projected) scalar Gauss-Seidel iterative method. A theoretical comparison of the “best” (projected) Gauss-Seidel and the “best” modulus-based splitting Gauss-Seidel method is in favor of the former method. A number of numerical examples support most of our theoretical findings.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ahn, B.H.: Solution of nonsymmetric linear complementarity problems by iterative methods. J. Opt. Theory Appl. 33, 175–185 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Alanelli, M., Hadjidimos, A.: A new iterative criterion for H−matrices. SIAM J. Matrix Anal. Appl. 29, 160–176 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bai, Z.-Z.: The convergence of parallel iteration algorithms for linear complementarity problems. Comput. Math. Applics 32, 1–17 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear compementarity problems: Parallel asynchronous methods. Intern. J. Comput. Math. 79, 205–232 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algor. 62, 59–77 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences Classics in Applied Mathematics, vol. 9. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  10. 10.

    Beauwens, R.: Factorization iterative methods, M−operators and H−operators. Numer. Math. 31, 335–357 (1979)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Bru Garcia, R., Giménez, I., Hadjidimos, A.: Is \(A \mathbb {C}^{n,n}\) a general H−matrix? Linear Algebra Appl. 436, 364–380 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Christopherson, D.G.: A new mathematical method for the solution of film lubrication problems. Proc. Inst. Mech. Eng. 146, 126–135 (1941)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)

    MATH  Google Scholar 

  14. 14.

    Cryer, C.W.: The method of Christopherson for solving free boundary problems for infinite journal bearings by means of finite differences. Math. Comput. 25, 435–443 (1971)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Cryer, C.W.: The solution of a quadratic programming problem using systematic over-relaxation. SIAM J. Control 9, 385–392 (1971)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Cvetković, Lj., Hadjidimos, A., Kostić, V.: On the choice of parameters in MAOR type splitting methods for the linear complementarity problem. Numer. Algor. 67, 793–806 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Cvetković, Lj., Kostić, V.: A note on the convergence of the MSMAOR method for linear complementarity problems. Numer. Linear Algebra Appl. 21, 534–539 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Duff, I.S., Reid, J.K.: An inmplementation of Tarjan’s algorithm for the block triangulation of a matrix. ACM Trans. Math. Soft. 4, 137–147 (1978)

    Article  MATH  Google Scholar 

  20. 20.

    Fridman, V.M., Chernina, V.S.: An iteration process for the solution of the finite dimensional contact problem. USSR Comput. Math. Math. Phys. 8, 210–214 (1967)

    Article  MATH  Google Scholar 

  21. 21.

    Hadjidimos, A.: The matrix analogue of the scalar AOR iterative method. J. Comput. Appl. Math 288, 366–378 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Hadjidimos, A., Lapidakis, M., Tzoumas, M.: On iterative solution for the linear complementarity problem with an H +−matrix. SIAM J. Matrix Anal. 33, 97–110 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 431, 197–210 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Hadjidimos, A., Tzoumas, M.: On the solution of the linear complementarity problem by the generalized accelerated overrelaxation iterative method. J. Optim. Theory Appl. 165, 545–562 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Kappel, N.W., Watson, L.T.: Iterative algorithms for the linear complementarity problems. Int. J. Comput. Math. 19, 273–297 (1986)

    Article  MATH  Google Scholar 

  26. 26.

    Koulisianis, M.D., Papatheodorou, T.S.: Improving projected successive overrelaxation method for linear complementarity problems. Appl. Numer. Math. 45, 29–40 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Li, Y., Dai, P.: Generalized AOR for linear complementarity problem. Appl. Math. Comput. 188, 7–18 (2007)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Li, W.: A general modulus-based matrix splitting iteration method for linear complementarity problems of H−matrices. Appl. Math. Lett. 26, 1159–1164 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Mangasarian, O.L.: Solution of symmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 22, 465–485 (1977)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Marek, I., Szyld, D.B.: Comparison theorems of weak splittings of bounded operators. Numer. Math. 58, 387–397 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Murty, K.G.: Linear complementarity, linear and nolinear programming internet edition (1997)

  32. 32.

    O’Leary, D.P., White, R.E.: Multi-splittings of matrices and parallel solution of linear systems. SIAM J. Algebr. Discr. Methods 6, 630–640 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Ortega, J.M., Reinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables Classics in Applied Mathematics, vol. 30. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  34. 34.

    Pang, J.S.: Necessary and sufficient conditions for the convergence of iterative methods for the linear complementarity problem. J. Optim. Theory Appl. 42, 1–17 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Pantazopoulos, K.: Numerical methods and software for the pricing of american financial derivatives. Ph.D. thesis, Department of Computer Sciences, Purdue University, West Lafayette IN (1998)

  36. 36.

    Rainondi, A.A., Boyd, J.: A solution for the finite journal bearing and its application to analysis and design, III. Trans. American Soc. of Lubric. Engineers 1, 194–209 (1958)

    Google Scholar 

  37. 37.

    Saberi Najafi, H., Edalatpanah, S.A.: On the convergence regions of generalized accelerated overrelaxation method for linear complementarity problems. J. Optim. Theory Appl. 156, 859–866 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Schneider, H.A.: Theorems on M−splittings of a singular M−matrix which depend on graph structure. Linear Algebra Appl. 58, 407–424 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Song, Y.: On the convergence of the generalized AOR method. Linear Algebra Appl. 256, 199–218 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    van Bokhoven, W.M.G.: A Class of Linear Complementarity Problems is Solvable in Polynomial Time. Department of Electrical Engineering, University of Technology. Eindhoven, Netherlands (1981)

    Google Scholar 

  42. 42.

    Varga, R.S.: Matrix Iterative Analysis, 2nd Edition. Revised and Expanded, Springer, Berlin (2000)

  43. 43.

    Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)

    MATH  Google Scholar 

  44. 44.

    Zhang, L.-L.: Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algor. 57, 83–99 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  45. 45.

    Zhang, L.-L.: Two-stage multisplitting iteration methods using modulus-based matrix splitting as inner iteration for linear complementarity problems. J. Optim. Theory Appl. 160, 189–203 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Zhang, L.-L.: Two-step modulus-based synchronous multisplitting iteration methods for linear complementarity problems. J. Comput. Math. 33, 100–112 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  47. 47.

    Zhang, L.-L., Ren, Z.-R.: Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 26, 638–642 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  48. 48.

    Zhang, L.-L., Zhang, Y.-P., Ren, Z.-R.: New convergence proofs of modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Linear Algebra Appl. 481, 83–93 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  49. 49.

    Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Algor. 64, 245–262 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  50. 50.

    Zheng, N., Yin, J.-F.: Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an H +−matrix. J. Comput. Appl. Math. 260, 281–293 (2014)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Apostolos Hadjidimos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hadjidimos, A., Tzoumas, M. The solution of the linear complementarity problem by the matrix analogue of the accelerated overrelaxation iterative method. Numer Algor 73, 665–684 (2016). https://doi.org/10.1007/s11075-016-0112-0

Download citation

Keywords

  • Linear complementarity problem (LCP)
  • H +−matrices
  • AOR
  • GAOR
  • MAAOR iterative methods
  • Perron-Frobenius theory
  • Regular splittings

Mathematics Subject Classifications (2010)

  • Primary 65F10