Skip to main content
Log in

On spectral distribution of kernel matrices related to radial basis functions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper focuses on spectral distribution of kernel matrices related to radial basis functions. By relating a contemporary finite-dimensional linear algebra problem to a classical problem on infinite-dimensional linear integral operator, the paper shows how the spectral distribution of a kernel matrix relates to the smoothness of the underlying kernel function. The asymptotic behaviour of the eigenvalues of a infinite-dimensional kernel operator are studied from a perspective of low rank approximation—approximating an integral operator in terms of Fourier series or Chebyshev series truncations. Further, we study how the spectral distribution of interpolation matrices of an infinite smooth kernel with flat limit depends on the geometric property of the underlying interpolation points. In particularly, the paper discusses the analytic eigenvalue distribution of Gaussian kernels, which has important application on stably computing of Gaussian radial basis functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, K.: Eigenvalues of Euclidean distance matrices. J. Approx. Theory 68(1), 74–82 (1992). doi:10.1016/0021-9045(92)90101-S

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, K., Sivakumar, N., Ward, J.D.: On the sensitivity of radial basis interpolation to minimal data separation distance. Constr. Approx. doi:8(4), 401–426 (1992). 10.1007/BF01203461

    Article  MathSciNet  MATH  Google Scholar 

  3. Baxter, B.J.C.: Norm estimates for inverses of Toeplitz distance matrices. J. Approx. Theory 79(2), 222–242 (1994). doi:10.1006/jath.1994.1126

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, S.: Sur la valeur les recherches récentes relatives à la meilleure approximation des fonctions continues par des polynômes. In: Proceedings 5th. Intern. Math. Congress, v. 1, vol. 1, pp 256–266 (1912)

  5. Buescu, J., Paixão, A.: Eigenvalue distribution of positive definite kernels on unbounded domains. Integr. Equ. Oper. Theory 57(1), 19–41 (2007). doi:10.1007/s00020-006-1445-1

    Article  MATH  Google Scholar 

  6. Buescu, J., Paixão, A.C.: Eigenvalue distribution of Mercer-like kernels. Math. Nachr. 280(9-10), 984–995 (2007). doi:10.1002/mana.200510530

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, C.H., Ha, C.W.: On eigenvalues of differentiable positive definite kernels. Integr. Equ. Oper. Theory 33(1), 1–7 (1999). doi:10.1007/BF01203078

    Article  MathSciNet  MATH  Google Scholar 

  8. Cochran, J.A.: The analysis of linear integral equations. McGraw-Hill Book Co., New York (1972). McGraw-Hill Series in Modern Applied Mathematics

    MATH  Google Scholar 

  9. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012). doi:10.1137/110824784

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferreira, J.C., Menegatto, V.A.: Eigenvalues of integral operators defined by smooth positive definite kernels. Integr. Equ. Oper. Theory 64(1), 61–81 (2009). doi:10.1007/s00020-009-1680-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011). doi:10.1137/09076756X

    Article  MathSciNet  MATH  Google Scholar 

  12. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007/08). doi:10.1137/060671991

  13. Fornberg, B., Wright, G., Larsson, E.: Some observations regarding interpolants in the limit of flat radial basis functions. Comput. Math. Appl. 47(1), 37–55 (2004). doi:10.1016/S0898-1221(04)90004-1

    Article  MathSciNet  MATH  Google Scholar 

  14. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379–398 (2007). doi:10.1016/j.camwa.2007.01.028

    Article  MathSciNet  MATH  Google Scholar 

  15. Fredholm, I.: Sur une classe d’équations fonctionnelles. Acta Math. 27(1), 365–390 (1903). doi:10.1007/BF02421317

    Article  MathSciNet  MATH  Google Scholar 

  16. Ha, C.W.: Eigenvalues of differentiable positive definite kernels. SIAM J. Math. Anal 17(2), 415–419 (1986). doi:10.1137/0517031

    Article  MathSciNet  MATH  Google Scholar 

  17. Hille, E., Tamarkin, J.D.: On the characteristic values of linear integral equations. Acta Math. 57(1), 1–76 (1931). doi:10.1007/BF02403043

    Article  MathSciNet  Google Scholar 

  18. de Hoog, F.R.: Review of Fredholm equations of the first kind, Application and numerical solution of integral equations (Proc. Sem., Australian Nat. Univ., Canberra, 1978), Monographs Textbooks Mech. Solids Fluids: Mech, Anal., vol. 6, pp. 119–134. Sijthoff & Noordhoff, Alphen aan den Rijn (1980)

  19. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge (1990). Corrected reprint of the 1985 original

    MATH  Google Scholar 

  20. Katznelson, Y.: An introduction to harmonic analysis. John Wiley & Sons Inc., New York (1968)

    MATH  Google Scholar 

  21. Kress, R., 2nd edn.: Linear integral equations, Applied Mathematical Sciences, vol. 82. Springer, New York (1999)

    Book  Google Scholar 

  22. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005). doi:10.1016/j.camwa.2005.01.010

    Article  MathSciNet  MATH  Google Scholar 

  23. Larsson, E., Lehto, E., Heryudono, E., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions, Tech. Rep. 2012-020, Department of Information Technology, Uppsala University (2012)

  24. Little, G., Reade, J.B.: Eigenvalues of analytic kernels. SIAM J. Math. Anal. 15(1), 133–136 (1984). doi:10.1137/0515009

    Article  MathSciNet  MATH  Google Scholar 

  25. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2(1), 11–22 (1986). doi:10.1007/BF01893414

    Article  MathSciNet  MATH  Google Scholar 

  26. Narcowich, F., Sivakumar, N., Ward, J.: On condition numbers associated with radial-function interpolation. J. Math. Anal. Appl. 186(2), 457–485 (1994). doi:10.1006/jmaa.1994.1311

    Article  MathSciNet  MATH  Google Scholar 

  27. Narcowich, F., Ward, J.: Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices. J. Approx. Theory 69(1), 84–109 (1992). doi:10.1016/0021-9045(92)90050-X

    Article  MathSciNet  MATH  Google Scholar 

  28. Narcowich, F.J., Ward, J.D.: Norms of inverses for matrices associated with scattered data. In: Curves and surfaces (Chamonix-Mont-Blanc, 1990), pp 341–348. Academic Press, Boston (1991)

  29. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning, vol. 1. MIT press Cambridge, MA (2006)

    Google Scholar 

  30. Reade, J.B.: Asymptotic behaviour of eigenvalues of certain integral equations. Proc. Edinburgh Math. Soc. (2) 22(2), 137–144 (1979). doi:10.1017/S0013091500016254

    Article  MathSciNet  MATH  Google Scholar 

  31. Reade, J.B.: Eigenvalues of Lipschitz kernels. Math. Proc. Cambridge Philos. Soc. 93(1), 135–140 (1983). doi:10.1017/S0305004100060412

    Article  MathSciNet  MATH  Google Scholar 

  32. Reade, J.B.: Eigenvalues of positive definite kernels. SIAM J. Math. Anal. 14(1), 152–157 (1983). doi:10.1137/0514012

    Article  MathSciNet  MATH  Google Scholar 

  33. Reade, J.B.: Eigenvalues of positive definite kernels. II. SIAM J. Math. Anal. 15(1), 137–142 (1984). doi:10.1137/0515010

    Article  MathSciNet  MATH  Google Scholar 

  34. Reade, J.B.: Eigenvalues of smooth kernels. Math. Proc. Cambridge Philos. Soc. 95(1), 135–140 (1984). doi:10.1017/S0305004100061375

    Article  MathSciNet  MATH  Google Scholar 

  35. Reade, J.B.: On the sharpness of Weyl’s estimate for eigenvalues of smooth kernels. SIAM J. Math. Anal. 16(3), 548–550 (1985). doi:10.1137/0516040

    Article  MathSciNet  MATH  Google Scholar 

  36. Reade, J.B.: Positive definite C p p kernels. SIAM J. Math. Anal. 17(2), 420–421 (1986). doi:10.1137/0517032

    Article  MathSciNet  MATH  Google Scholar 

  37. Reade, J.B.: On the sharpness of Weyl’s estimates for eigenvalues of smooth kernels. II. SIAM J. Math. Anal. 19(3), 627–631 (1988). doi:10.1137/0519044

    Article  MathSciNet  MATH  Google Scholar 

  38. Reade, J.B.: Eigenvalues of smooth positive definite kernels. Proc. Edinburgh Math. Soc. (2) 35(1), 41–45 (1992). doi:10.1017/S0013091500005307

    Article  MathSciNet  MATH  Google Scholar 

  39. Renaut, R.A., Zhu, S.: Application of fredholm integral equations inverse theory to the radial basis function approximation problem. Tech Rep. 1630. The University of Oxford (2012)

  40. Schaback, R.: Lower bounds for norms of inverses of interpolation matrices for radial basis functions. J. Approx. Theory 79 (2), 287–306 (1994). doi:10.1006/jath.1994.1130

    Article  MathSciNet  MATH  Google Scholar 

  41. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(3), 251–264 (1995). doi:10.1007/BF02432002

    Article  MathSciNet  MATH  Google Scholar 

  42. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21(3), 293–317 (2005). doi:10.1007/s00365-004-0585-2

    Article  MathSciNet  MATH  Google Scholar 

  43. Smithies, F.: The eigenvalue and singular values of integral equations. Proc. London Math. Soc. 43, 255–279 (1937)

    MathSciNet  Google Scholar 

  44. Trefethen, L.: Approximation Theory and Approximation Practice. Applied Mathematics. Society for Industrial and Applied Mathematics (2013). URL http://books.google.co.uk/books?id=En41UGQ6YXsC

  45. Wathen, A.J.: Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal. 7(4), 449–457 (1987). doi:10.1093/imanum/7.4.449

    Article  MathSciNet  MATH  Google Scholar 

  46. Wendland, H.: Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  47. Weyl, H.: Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische Annalen 71, 441–479 (1912).

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu, H., Williams, C., Rohwer, R., Morciniec, M.: Gaussian regression and optimal finite dimensional linear models. In: Bishop, C. (ed.) Neural Networks and Machine Learning. Springer, Berlin (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengxin Zhu.

Additional information

This research is partially supported by Nature Science Foundation of China (No. 61170309, No.61472462, and No.91430218) and the Laboratory of Computational Physics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wathen, A.J., Zhu, S. On spectral distribution of kernel matrices related to radial basis functions. Numer Algor 70, 709–726 (2015). https://doi.org/10.1007/s11075-015-9970-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9970-0

Keywords

Mathematics Subject Classification (2010)

Navigation