Numerical Algorithms

, Volume 70, Issue 3, pp 469–484

A finite-step construction of totally nonnegative matrices with specified eigenvalues

Original Paper

Abstract

Matrices where all minors are nonnegative are said to be totally nonnegative (TN) matrices. In the case of banded TN matrices, which can be expressed by products of several bidiagonal TN matrices, Fukuda et al. (Annal. Mat. Pura Appl. 192, 423–445, 2013) discussed the eigenvalue problem from the viewpoint of the discrete hungry Toda (dhToda) equation. The dhToda equation is a discrete integrable system associated with box and ball systems. In this paper, we consider an inverse eigenvalue problem for such banded TN matrices by examining the properties of the dhToda equation. This problem is a real-valued nonnegative inverse eigenvalue problem. First, we show the determinant solution to the dhToda equation with suitable boundary conditions. Next, we clarify the relationship between the characteristic polynomials of the banded TN matrices and the determinant solution. Finally, taking this relationship into account, we design a finite-step procedure for constructing banded TN matrices with specified eigenvalues. We also present an example to demonstrate this procedure.

Keywords

Finite-step construction Totally nonnegative Inverse eigenvalue problem Discrete hungry Toda equation

Mathematical Subject Classifications (2010)

65F18 15A48 37N30

Preview

Unable to display preview. Download preview PDF.

References

1. 1.
Akaiwa, K., Iwasaki, M., Kondo, K., Nakamura, Y.: A tridiagonal matrix construction by the quotient difference recursion formula in the case of multiple eigenvalues. Pacific. J. Math. Indust. 6 (2014)Google Scholar
2. 2.
Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987)
3. 3.
de Boor, C., Golub, G.H.: The numerically stable reconstruction of a Jacobi matrix from spectral data. Linear Algebra Appl. 21, 245–260 (1978)
4. 4.
Chu, M.T., Golub, G.H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications. Oxford University Press, New York (2005)
5. 5.
Cryer, C.W.: Some properties of totally positive matrices. Linear Algebra Appl. 15, 1–25 (1976)
6. 6.
Fallat, S.: Bidiagonal factorizations of totally nonnegative matrices. Amer. Math. Monthly 108, 697–712 (2001)
7. 7.
Fallat, S.M., Johnson, C.R.: Totally Nonnegative Matrices. Princeton University Press, Princeton (2011)
8. 8.
Fukuda, A., Yamamoto, Y., Iwasaki, M., Ishiwata, E., Nakamura, Y.: Error analysis for matrix eigenvalue algorithm based on the discrete hungry Toda equation. Numer. Algor. 61, 243–260 (2012)
9. 9.
Fukuda, A., Ishiwata, E., Yamamoto, Y., Iwasaki, M., Nakamura, Y.: Integrable discrete hungry systems and their related matrix eigenvalues. Annal. Mat. Pura Appl. 192, 423–445 (2013)
10. 10.
Fukuda, A., Yamamoto, Y., Iwasaki, M., Ishiwata, E., Nakamura, Y.: On a shifted LR transformation derived from the discrete hungry Toda equation. Monat. Math. 170, 11–26 (2013)
11. 11.
Gasca, M., Micchelli, C.A. (eds.): Total positivity and its applications. Mathematics Applied, vol. 359. Kluwer Academic, Dordrecht (1996)Google Scholar
12. 12.
Gladwell, G.M.L.: Inner totally positive matrices. Linear Algebra Appl. 393, 179–195 (2004)
13. 13.
The GNU Multiple precision arithmetic library, https://gmplib.org
14. 14.
The GNU MPFR library, http://www.mpfr.org
15. 15.
Gragg, W.B., Harrod, W.J.: The numerically stable reconstruction of Jacobi matrices from spectral data. Numer. Math. 44, 317–335 (1984)
16. 16.
Henrici, P.: Applied and Computational Complex Analysis, vol. 1. John Wiley, New York (1974)
17. 17.
Hirota, R.: Nonlinear partial difference equation. II. Discrete-Time Toda equation. J. Phys. Soc. Japan 46, 2074–2078 (1977)
18. 18.
Karlin, S.: Total Positivity, vol. 1. Stanford University Press, Stanford (1968)Google Scholar
19. 19.
Pinkus, A.: Totally Positive Matrices. Cambridge University Press, New York (2009)
20. 20.
Press, W.H., Vetterling, W.T., Teukolsky, S.A., Flannery, B.P., 2nd ed.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)
21. 21.
Symes. W.W.: The QR algorithm and scattering for the finite nonperiodic Toda lattice. Phys. D 4, 275–280 (1982)
22. 22.
Tokihiro, T., Nagai, A., Satsuma, J.: Proof of solitonical nature of box and ball system by the means of inverse ultra-discretization. Inverse Probl. 15, 1639–1662 (1999)

© Springer Science+Business Media New York 2015

Authors and Affiliations

• Kanae Akaiwa
• 1
Email author
• Yoshimasa Nakamura
• 1
• Masashi Iwasaki
• 2
• Hisayoshi Tsutsumi
• 3
• Koichi Kondo
• 3
1. 1.Graduate School of InformaticsKyoto UniversitySakyo-kuJapan
2. 2.Department of Informatics and Environmental ScienceKyoto Prefectural UniversitySakyo-kuJapan
3. 3.Graduate School of Science and EngineeringDoshisha UniversityKyotanabe CityJapan

Personalised recommendations

Citearticle 