Skip to main content
Log in

Adaptive splitting methods for nonlinear Schrödinger equations in the semiclassical regime

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The error behavior of exponential operator splitting methods for nonlinear Schrödinger equations in the semiclassical regime is studied. For the Lie and Strang splitting methods, the exact form of the local error is determined and the dependence on the semiclassical parameter is identified. This is enabled within a defect-based framework which also suggests asymptotically correct a posteriori local error estimators as the basis for adaptive time stepsize selection. Numerical examples substantiate and complement the theoretical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antoine, X., Bao, W., Besse, Ch.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 184, 2621–2633 (2013)

    Article  MathSciNet  Google Scholar 

  2. Auzinger, W., Herfort, W.: Local error structures and order conditions in terms of Lie elements for exponential operator splitting schemes. Opuscula Math. 34(2), 243–255 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auzinger, W., Hofstätter, H., Koch, O., Thalhammer, M.: Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case. J. Comput. Appl. Math. 273, 182–204 (2014)

    Article  MATH  Google Scholar 

  4. Auzinger, W., Koch, O., Thalhammer, M.: Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case. J. Comput. Appl. Math. 236, 2643–2659 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auzinger, W., Koch, O., Thalhammer, M.: Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II: Higher-order methods for linear problems. J. Comput. Appl. Math. 255, 384–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Effective approximation for the semiclassical Schrödinger equation. Found. Comput. Math. 14(4), 689–720 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, W., Jin, S., Markowich, P.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bao, W., Jin, S., Markowich, P.: Numerical study of time-splitting spectral discretisations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25(/1), 27–64 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40(1), 26–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanes, S., Moan, P. C.: Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comput. Appl. Math. 142(2), 313–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cano, B., González-Pachón, A.: Plane waves numerical stability of some explicit exponential methods for cubic Schrödinger equation. Available at http://hermite.mac.cie.uva.es/bego/cgp3.pdf (2013)

  12. Carles, R.: On Fourier time-splitting methods for nonlinear Schrödinger equations in the semiclassical limit. SIAM J. Numer. Anal. 51(6), 3232–3258 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carles, R.: Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(3), 501–542 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahlby, M., Owren, B.: Plane wave stability of some conservative schemes for the cubic Schrödinger equation. M2AN Math. Model. Numer. Anal. 43, 677–687 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Degond, P., Gallego, S., Méhats, F.: An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit. C. R. Math. Acad. Sci. Paris 345(9), 531–536 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Descombes, S., Thalhammer, M.: An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime. BIT Numer. Math. 50, 729–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Descombes, S., Thalhammer, M.: The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: A compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime. IMA J. Numer. Anal. 33, 722–745 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Faou, E.: Geometric numerical integration and Schrödinger equations. European Math. Soc. (2012)

  19. Faou, E., Gauckler, L., Lubich, Ch.: Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus. Comm. Partial Diff. Equa. 38(7), 1123–1140 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gauckler, L.: Convergence of a split-step Hermite method for the Gross–Pitaevskii equation. IMA J. Numer. Anal. 31, 396–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gauckler, L., Lubich, Ch.: Splitting integrators for nonlinear Schrödinger equations over long times. Found. Comput. Math. 10, 275–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gradinaru, V., Hagedorn, G.A.: Convergence of a semiclassical wavepacket based time-splitting for the Schrödinger equation. Numer. Math. 126(1), 53–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations I: Nonstiff problems, vol. 1. Springer Series in Computational Mathematics, Heidelberg (1993)

  24. Jin, S., Markowich, P., Sparber, Ch.: Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20, 121–209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koch, O., Neuhauser, Ch., Thalhammer, M.: Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics. M2AN Math. Model. Numer. Anal. 47, 1265–1284 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lubich, Ch.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77, 2141–2153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. McDonald, G.S., Syed, K.S., Firth, W.J.: Dark spatial soliton break-up in the transverse plane. Opt. Commun. 95, 281–288 (1993)

    Article  Google Scholar 

  28. Ruth, R.D.: A canonical integration technique. T. Nucl. S. 30, 2669–2671 (1983)

    Article  Google Scholar 

  29. Thalhammer, M.: Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50, 3231–3258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, X., Zhang, J.: Computation of the Schrödinger equation in the semiclassical regime on an unbounded domain. SIAM J. Numer. Anal. 52(2), 808–831 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yoshida, H.: Construction of higher order symplectic intergrators. Phys. Lett. A 150, 262–268 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kassebacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auzinger, W., Kassebacher, T., Koch, O. et al. Adaptive splitting methods for nonlinear Schrödinger equations in the semiclassical regime. Numer Algor 72, 1–35 (2016). https://doi.org/10.1007/s11075-015-0032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0032-4

Keywords

Mathematics Subject Classifications (2010)

Navigation