Abstract
New algorithms are developed for estimating the condition number of f(A)b, where A is a matrix and b is a vector. The condition number estimation algorithms for f(A) already available in the literature require the explicit computation of matrix functions and their Fr´echet derivatives and are therefore unsuitable for the large, sparse A typically encountered in f(A)b problems. The algorithms we propose here use only matrix-vector multiplications. They are based on a modified version of the power iteration for estimating the norm of the Fr´echet derivative of a matrix function, and work in conjunction with any existing algorithm for computing f(A)b. The number of matrix-vector multiplications required to estimate the condition number is proportional to the square of the number of matrix-vector multiplications required by the underlying f(A)b algorithm. We develop a specific version of our algorithm for estimating the condition number of e A b, based on the algorithm of Al-Mohy and Higham (SIAM J. Matrix Anal. Appl. 30(4), 1639–1657, 2009). Numerical experiments demonstrate that our condition estimates are reliable and of reasonable cost.
This is a preview of subscription content, access via your institution.
References
Al-Mohy, A.H., Higham, N.J.: Computing the Frechet́ derivative of the matrix exponential, with an application to condition number estimation. SIAM J. Matrix Anal. Appl. 30(4), 1639–1657 (2009)
Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011)
Al-Mohy, A.H., Higham, N.J.: Improved inverse scaling and squaring algorithms for the matrix logarithm. SIAM J. Sci. Comput. 34(4), C153–C169 (2012)
Al-Mohy, A.H., Higham, N.J., Relton, S.D.: Computing the Frechet́ derivative of the matrix logarithm and estimating the condition number. SIAM J. Sci. Comput. 35(4), C394–C410 (2013)
Björck, Å., Hammarling, S.: A Schur method for the square root of a matrix. Linear Algebra Appl. 52/53, 127–140 (1983)
Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34(4), A2145–A2172 (2012)
Chen, T.-Y., Demmel, J.W.: Balancing sparse matrices for computing eigenvalues. Linear Algebra Appl. 309, 261–287 (2000)
Davies, P.I., Higham, N.J.: A Schur–Parlett algorithm for computing matrix functions. SIAM J. Matrix Anal. Appl. 25(2), 464–485 (2003)
Davies, P.I., Higham, N.J.: Computing f(A)b for matrix functions f. In: Boriçi, A., Frommer, A., Joó, B., Kennedy, A., Pendleton, B. (eds.) QCD and Numerical Analysis III, volume 47 of Lecture Notes in Computational Science and Engineering, pp 15–24. Springer, Berlin (2005)
Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Software 38(1), 1 (2011)
Deadman, E., Higham, N.J.: Testing matrix function algorithms using identities. MIMS EPrint 2014.13, Manchester Institute for Mathematical Sciences, The University of Manchester, UK (2014)
Deadman, E., Higham, N.J., Ralha, R.: Blocked Schur algorithms for computing the matrix square root. In: Manninen, P., Öster, P. (eds.) Applied Parallel and Scientific Computing: 11th International Conference, PARA 2012, Helsinki, Finland, volume 7782 of Lecture Notes in Computer Science, pp 171–182. Springer, Berlin (2013)
Fischer, T.M.: On the stability of some algorithms for computing the action of the matrix exponential. Linear Algebra Appl. 443, 1–20 (2014)
Frommer, A., Simoncini, V.: Matrix functions. In: Schilders, W.H.A., Van der Vorst, H.A., Rommes, J. (eds.) Model Order Reduction: Theory, Research Aspects and Applications, volume 13 of Mathematics in Industry, pp 275–303, Berlin (2008)
Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Statist. Comput. 13(5), 1236–1264 (1992)
Güttel, S.: Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection. GAMM-Mitteilungen 36(1), 8–31 (2013)
Hale, N., Higham, N.J., Trefethen, L.N.: Computing A α, \(\log (A)\), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46(5), 2505–2523 (2008)
Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition (2002)
Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2008)
Higham, N.J., Edvin, D.: A catalogue of software for matrix functions. Version 1.0 MIMS EPrint 2014.8, Manchester Institute for Mathematical Sciences, The University of Manchester, UK (2014)
Higham, N.J., Lin, L.: An improved Schur–Padé algorithm for fractional powers of a matrix and their Frechet́ derivatives. SIAM J. Matrix Anal. Appl. 34(3), 1341–1360 (2013)
Higham, N.J., Tisseur, F.: A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21(4), 1185–1201 (2000)
Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica 19, 209–286, 5 (2010)
Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001)
Kenney, C.S., Laub, A.J.: Condition estimates for matrix functions. SIAM J. Matrix Anal. Appl. 10(2), 191–209 (1989)
Kenney, C.S., Laub, A.J.: Small-sample statistical condition estimates for general matrix functions. J. Sci. Comput. 15(1), 36–61 (1994)
Knizhnerman, L.A.: Calculation of functions of unsymmetric matrices using Arnoldi’s method. U.S.S.R. Comput. Maths. Math. Phys. 31(1), 1–9 (1991)
Moler, C.B., Loan, C.V.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)
Rice, J.: A theory of condition. SIAM J. Numer. Anal. 3(2), 287–310 (1966)
Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)
Sheehan, B.N., Saad, Y., Sidje, R.B.: Computing exp(- τ A)b with Laguerre polynomials. Electron. Trans. Numer. Anal. 37, 147–165 (2010)
Sidje, R.B.: Expokit: A software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998)
Trefethen, L.N., Weideman, J.A.C., Schmelzer, T.: Talbot quadratures and rational approximations. BIT 46(3), 653–670 (2006)
Van der Vorst, H.A.: An iterative solution method for solving f(A)x=b, using Krylov subspace information obtained for the symmetric positive definite matrix A. J. Comput. Appl. Math. 18(2), 249–263 (1987)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by European Research Council Advanced Grant MATFUN (267526).
Rights and permissions
About this article
Cite this article
Deadman, E. Estimating the condition number of f(A)b . Numer Algor 70, 287–308 (2015). https://doi.org/10.1007/s11075-014-9947-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-014-9947-4
Keywords
- Matrix function
- Matrix exponential
- Condition number estimation
- Fréchet derivative
- Power iteration
- Block 1-norm estimator
- Python
Mathematics Subject Classifications (2010)
- 15A60
- 65F35
- 65F60