Numerical Algorithms

, Volume 70, Issue 1, pp 191–203 | Cite as

Asymptotic error of cubic B-spline interpolation using prefiltering

  • Yvonne Percan
  • Stefan Zellmann
  • Ulrich Lang
Open Access
Original Paper


A popular class of reconstruction filters that are used in signal and image processing is based on cubic B-splines. One reason for their popularity is the fact that they can be efficiently implemented. This is specifically true with modern GPUs where cubic B-spline filtering can be implemented by means of linearly interpolating texture fetches so that the actual number of memory accesses can be significantly reduced. The curve obtained from filtering with the cubic B-spline does in general not interpolate the original data set. The latter can however be achieved by applying a prefiltering step that transforms the original data set. We study the asymptotic behavior of the reconstruction error of the cubic B-spline interpolation filter using a state of the art method that is based on a Taylor series expansion and that was carefully adjusted to accommodate the infinite support of this reconstruction filter.


Splines Reconstruction Asymptotic error 


  1. 1.
    Catmull, E., Rom, R.: A class of local interpolating splines. Computer Aided Geometric Design. Academic Press, pp. 317–326 (1974)Google Scholar
  2. 2.
    Champagnat, F., Le Sant, Y.: Efficient cubic b-spline image interpolation on a GPU. J. Graph. Tools 16(4), 218–232 (2012)CrossRefGoogle Scholar
  3. 3.
    Etiene, T., Jonsson, D., Ropinski, T., Scheidegger, C., Comba, J., Nonato, L., Kirby, R., Ynnerman, A., Silva, C.: Verifying volume rendering using discretization error analysis. IEEE Trans. Vis. Comput. Graph. 20(1), 140–154 (2013)CrossRefGoogle Scholar
  4. 4.
    Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoustics Speech Signal Process. 29(6), 1153–1160 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lu, W., Vaswani, N.: Exact reconstruction conditions and error bounds for regularized Modified Basis Pursuit (Reg-modified-BP). In: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 763–767. IEEE (2010)Google Scholar
  6. 6.
    Machiraju, R., Yagel, R.: Reconstruction error characterization and control: A sampling theory approach. IEEE Trans. Vis. Comput. Graph 2(4), 364–378 (1996)CrossRefGoogle Scholar
  7. 7.
    Marschner, S.R., Lobb, R.: An evaluation of reconstruction filters for volume rendering. In: Bergeron, R.D., Kaufman, A.E. (eds.) IEEE Visualization, pp. 100–107. IEEE Computer Society (1994)Google Scholar
  8. 8.
    Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer-graphics. SIGGRAPH Comput. Graph 22(4), 221–228 (1988)CrossRefGoogle Scholar
  9. 9.
    Möller, T., Machiraju, R., Mueller, K., Yagel, R.: Evaluation and design of filters using a taylor series expansion. IEEE Trans. Vis. Comput. Graph. 3(2), 184–199 (1997)CrossRefGoogle Scholar
  10. 10.
    Möller, T., Mueller, K., Kurzion, Y., Machiraju, R., Yagel, R.: Design of accurate and smooth filters for function and derivative reconstruction. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization, VVS ’98, pp. 143–151. ACM, New York (1998)Google Scholar
  11. 11.
    Nehab, D., Maximo, A., Lima, R.S., Hoppe, H.: GPU-efficient recursive filtering and summed-area tables. ACM Trans. Graph. (Proc. ACM SIGGRAPH Asia 2011) 30(6), 176 (2011)zbMATHGoogle Scholar
  12. 12.
    Ruijters, D., ter Haar Romeny, B.M., Suetens, P.: Efficient gpu-based texture interpolation using uniform b-splines. J. Graph. Tools 13(4), 61–69 (2008)CrossRefGoogle Scholar
  13. 13.
    Ruijters, D., Thévenaz, P.: Gpu prefilter for accurate cubic b-spline interpolation. Comput. J. 55(1), 15–20 (2012)CrossRefGoogle Scholar
  14. 14.
    Sigg, C., Hadwiger, M.: Fast third-order texture filtering. In: Pharr, M. (ed.) GPU Gems 2, pp. 313–329. Addison-Wesley (2005)Google Scholar
  15. 15.
    Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Process. Mag. 16(6), 22–38 (1999). IEEE Signal Processing Society’s 2000 magazine awardCrossRefzbMATHGoogle Scholar
  16. 16.
    Unser, M., Aldroubi, A., Eden, M.: Fast b-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 277–285 (1991)CrossRefGoogle Scholar
  17. 17.
    Unser, M., Aldroubi, A., Eden, M., Fellow, L.: B-spline signal processing: Part I-theory. IEEE Trans. Signal Process. 41, 821–833 (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Chair of Computer ScienceUniversity of CologneCologneGermany

Personalised recommendations