Numerical Algorithms

, Volume 70, Issue 1, pp 61–91 | Cite as

Defect-based local error estimators for high-order splitting methods involving three linear operators

  • Winfried Auzinger
  • Othmar Koch
  • Mechthild Thalhammer
Original Paper


Prior work on high-order exponential operator splitting methods is extended to evolution equations defined by three linear operators. A posteriori local error estimators are constructed via a suitable integral representation of the local error involving the defect associated with the splitting solution and quadrature approximation via Hermite interpolation. In order to prove asymptotical correctness, a multiple integral representation involving iterated defects is deduced by repeated application of the variation-of-constant formula. The error analysis within the framework of abstract evolution equations provides the basis for concrete applications. Numerical examples for initial-boundary value problems of Schrödinger and of parabolic type confirm the asymptotical correctness of the proposed a posteriori error estimators.


Linear evolution equations Time integration methods High-order exponential operator splitting methods Local error A posteriori local error estimators 

Mathematics Subject Classification (2010)

65J10 65L05 65M12 65M15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yochelis, A., Sheintuch, M.: Towards nonlinear selection of reaction–diffusion patterns in presence of advection: a spatial dynamics approach. Phys. Chem. Chem. Phys. 11, 9210–9223 (2009)CrossRefGoogle Scholar
  2. 2.
    Fournier, D., Sibert, J., Hampton, J., Bills, P.: An advection–diffusion–reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (katsuwonus pelamis). Can. J. Fish. Aquat. Sci. 56, 925–938 (1999)Google Scholar
  3. 3.
    Du, Y., Mei, L.: On a nonlocal reaction–diffusion–advection equation modelling phytoplankton dynamics. Nonlinearity 24, 319–349 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bao, W.: Ground states and dynamics of multi-component Bose–Einstein condensates. Multiscale Model. Simul. 2, 210–236 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bao, W., Markowich, P., Schmeiser, C., Weishäupl, R.: On the Gross–Pitaevskii equation with strongly anisotropic confinement: formal asymptotics and numerical experiments. Math. Models Meth. Appl. Sci. 15, 767–782 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bao, W., Wang, H.: An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates. J. Comput. Phys. 217, 612–626 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhang, Y., Bao, W., Li, H.: Dynamics of rotating two-component Bose–Einstein condensates and its efficient computation. Physica D 234, 49–69 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Mod. 6, 1–135 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Auzinger, W., Herfort, W.: Local error structures and order conditions in terms of Lie elements for exponential splitting schemes. Opuscula Math. 34, 243–255 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Koch, O., Neuhauser, C., Thalhammer, M.: Embedded split–step formulae for the time integration of nonlinear evolution equations. Appl. Numer. Math. 63, 14–24 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Auzinger, W., Hofstätter, H., Koch, O., Thalhammer, M.: Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case. J. Comput. Appl. Math. 273, 182–204 (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Auzinger, W., Koch, O., Thalhammer, M.: Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case. J. Comput. Appl. Math. 236, 2643–2659 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Auzinger, W., Koch, O., Thalhammer, M.: Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II: Higher-order methods for linear problems. J. Comput. Appl. Math. 255, 384–403 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer-Verlag, Berlin (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT Numer. Math. 49, 487–508 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gross, E.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–457 (1961)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pitaevskii, L.: Vortex lines in an imperfect Bose gas. Soviet Phys. JETP 13, 451–454 (1961)MathSciNetGoogle Scholar
  18. 18.
    Doelman, A., Kaper, T., Zegeling, P.: Pattern formation in the one-dimensional Gray-Scott model. Nonlinearity 10, 523–563 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gray, P., Scott, S.: Sustained oscillations and other exotic patterns of behavior in isothermal reactions. J. Phys. Chem. 89, 22–32 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Winfried Auzinger
    • 1
  • Othmar Koch
    • 1
  • Mechthild Thalhammer
    • 2
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyWienAustria
  2. 2.Institut für MathematikLeopold–Franzens Universität InnsbruckInnsbruckAustria

Personalised recommendations