Skip to main content

Advertisement

SpringerLink
The three-term recursion for Chebyshev polynomials is mixed forward-backward stable
Download PDF
Download PDF
  • Original Paper
  • Open Access
  • Published: 12 November 2014

The three-term recursion for Chebyshev polynomials is mixed forward-backward stable

  • Alicja Smoktunowicz1,
  • Agata Smoktunowicz2 &
  • Ewa Pawelec1 

Numerical Algorithms volume 69, pages 785–794 (2015)Cite this article

  • 1071 Accesses

  • 2 Citations

  • 6 Altmetric

  • Metrics details

Abstract

This paper provides an error analysis of the three-term recurrence relation (TTRR) T n+1(x)=2x T n (x)−T n−1(x) for the evaluation of the Chebyshev polynomial of the first kind T N (x) in the interval [−1,1]. We prove that the computed value of T N (x) from this recurrence is very close to the exact value of the Chebyshev polynomial T N of a slightly perturbed value of x. The lower and upper bounds for the function \(C_{N}(x)= |T_{N}(x)| + |x T_{N}^{\prime }(x)|\) are also derived. Numerical examples that illustrate our theoretical results are given.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Bakhvalov, N.S.: The stable calculation of polynomial values. J. Comp. Math. Math. Phys. 11, 1568–1574 (1971)

    Google Scholar 

  2. Barrio, R.: Stability of parallel algorithms to evaluate Chebyshev series. Comput. Math. Appl. 41, 1365–1377 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrio, R.: Rounding error bounds for the Clenshaw and Forsythe algorithms for the evaluation of orthogonal series. J. Comput. Appl. Math. 138, 185–204 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrio, R.: A unified rounding error bound for polynomial evaluation. Adv. Comput. Math. 19(4), 385–399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrio, R., Jiang, H., Serrano, S.: A general condition number for polynomials. SIAM J. Numer. Anal. 51(2), 1280–1294 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berrut, J.-P., Trefethen, L. N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deuflhard, P.: On algorithm for the summation of certain special functions. Computing 17, 37–48 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Driscoll, T.A., Hale, N, Trefethen, L. N. (eds.): Chebfun Guide. Pafnuty Publications, Oxford (2014)

  9. Elliott, D.: Error analysis of an algorithm for summing certain finite series. J. Austral. Math. Soc. 8, 213–221 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation (Numerical Mathematics and Scientific Computation). Oxford University Press (2004)

  11. Gentleman, W.M.: An error analysis of Goertzel’s (Watt’s) method for computing Fourier coefficients. Comput. J. 12, 160–165 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  12. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  13. Koepf, W.: Efficient computation of Chebyshev polynomials. In: Wester, M.J. (ed.) Computer Algebra Systems: A Practical Guide, pp. 79–99. Wiley, New York (1999)

  14. Paszkowski, S.: Numerical Applications of Chebyshev Polynomials. Warsaw, (in Polish) (1975)

  15. Smoktunowicz, A.: Backward stability of Clenshaw’s algorithm. BIT 42(3), 600–610 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Szegö, G.: Orthogonal Polynomials, rev. ed. New York (1959)

  17. Wilkinson, J.H.: The Algebraic Eigenvalue Problems. Oxford University Press (1965)

  18. Woźniakowski, H.: Numerical stability for solving nonlinear equations. Numer. Math. 27, 373–390 (1977) 600–610

Download references

Author information

Authors and Affiliations

  1. Faculty of Mathematics and Information Science, University of Technology, Koszykowa 75, Warsaw, 00-662, Poland

    Alicja Smoktunowicz & Ewa Pawelec

  2. School of Mathematics, University of Edinburgh, Edinburgh, Scotland, EH9 3JZ, UK

    Agata Smoktunowicz

Authors
  1. Alicja Smoktunowicz
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Agata Smoktunowicz
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ewa Pawelec
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alicja Smoktunowicz.

Additional information

The research of Agata Smoktunowicz was funded by ERC grant 320974.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smoktunowicz, A., Smoktunowicz, A. & Pawelec, E. The three-term recursion for Chebyshev polynomials is mixed forward-backward stable. Numer Algor 69, 785–794 (2015). https://doi.org/10.1007/s11075-014-9925-x

Download citation

  • Received: 01 February 2014

  • Accepted: 25 September 2014

  • Published: 12 November 2014

  • Issue Date: August 2015

  • DOI: https://doi.org/10.1007/s11075-014-9925-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chebyshev polynomials
  • Error analysis
  • Roots of polynomials

Mathematics Subject Classifications (2010)

  • 65G50
  • 65D20
  • 65L70
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.