Skip to main content
Log in

A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose a conservative linearized difference scheme for the nonlinear fractional Schrödinger equation. The scheme efficiently avoids the time consuming iteration procedure necessary for the nonlinear scheme and thus is time saving relatively. It is rigorously proved that the scheme is mass conservative and uniquely solvable. Then employing mathematical induction, we further show that the proposed scheme is convergent at the order of O(τ 2 + h 2) in the l 2 norm with time step τ and mesh size h. Moreover, an extension to coupled nonlinear fractional Schrödinger systems is presented. Finally, numerical tests are carried out to corroborate the theoretical results and investigate the impact of the fractional order α on the collision of two solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G.D.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13, 115–124 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amore, P., Fernndez, F.M., Hofmann, C.P., Sáenz, R.A.: Collocation method for fractional quantum mechanics. J. Math. Phys. 51(122), 101 (2010)

    Google Scholar 

  3. Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184, 2621–2633 (2013)

    Article  MathSciNet  Google Scholar 

  4. Atangana, A.: On the solution of an acoustic wave equation with variable-order derivative loss operator. Adv. Differ. Equ. 2013, 1–12 (2013)

    Article  Google Scholar 

  5. Atangana, A., Cloot, A.H.: Stability and convergence of the space fractional variable-order Schrödinger equation. Adv. Differ. Equ 2013, 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  6. Atangana, A., Kilicman, A.: On the generalized mass transport equation to the concept of variable fractional derivative. Math. Probl. Eng. 2014, 809 (2014). Article ID 542

    MathSciNet  Google Scholar 

  7. Atangana, A., Noutchie, S.C.O.: Stability and convergence of a time-fractional variable order Hantush equation for a deformable aquifer. Abstr. Appl. Anal. 2013, Article ID 691, 060 (2013)

    Google Scholar 

  8. Atangana, A., Secer, A.: A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 681 (2013). Article ID 279

    Google Scholar 

  9. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Mod. 6, 1–135 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bao, W., Cai, Y.: Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comp. 82 (281), 99–128 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bao, W., Dong, X.: Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars. J. Comput. Phys. 230, 5449–5469 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bao, W., Tang, Q., Xu, Z.: Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys. 235, 423–445 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34, A2145—A2172 (2012)

    Article  MathSciNet  Google Scholar 

  14. Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231 (4), 1743–1750 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148, 397–415 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Delfour, M., Fortin, M., Payr, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ford, N.J., Rodrigues, M.M., Vieira, N.: A numerical method for the fractional Schrödinger type equation of spatial dimension two. Fract. Calc. Appl. Anal. 16, 454–468 (2013)

    MathSciNet  Google Scholar 

  18. Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204 (1), 468–477 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47(082), 104 (2006)

    MathSciNet  Google Scholar 

  20. Herzallah, M.A.E., Gepreel, K.A.: Approximate solution to the time-space fractional cubic nonlinear Schrödinger equation. Appl. Math. Model 36, 5678–5685 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hu, J., Xin, J., Lu, H.: The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition. Comput. Math. Appl. 63(3), 1510–1521 (2011)

    Article  MathSciNet  Google Scholar 

  22. Ilić, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. Fract. Calc. Appl. Anal. 8(3), 323–341 (2005)

    MATH  MathSciNet  Google Scholar 

  23. Ismail, M.S., Taha, T.R.: A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simulation 74, 302–311 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  Google Scholar 

  25. Laskin, N.: Fractional quantum mechanics and Levý path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(056), 108 (2002)

    MathSciNet  Google Scholar 

  27. Sepúlveda, M.: O.V.: Numerical methods for a coupled nonlinear Schrödinger system. Bol. Soc. Esp. Mat. Apl. 43, 95–102 (2008)

    Google Scholar 

  28. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng. Anal. Boundary Elem. 37(2), 475–485 (2013)

    Article  MathSciNet  Google Scholar 

  30. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci., 1–12 (2006)

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  33. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in. N. J. Math. Phys. 54(031), 501 (2013)

    MathSciNet  Google Scholar 

  34. Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A novel numerical approximation for the Riesz space fractional advection-dispersion equation. IMA J. Appl. Math. 79, 431–444 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sun, J., Gu, X., Ma, Z.: Numerical study of the soliton waves of the coupled nonlinear Schrödinger system. Physica D 196, 311–328 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sun, Z., Zhao, D.: On the L convergence of a difference scheme for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 59(10), 3286–3300 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximation for solving space fractional diffusion equations. Math. Comp. (arXiv:1201.5949v3 [math.NA]) (in press)

  38. Uzar, N., Ballikaya, S.: Investigation of classical and fractional Bose-Einstein condensation for harmonic potential. Physica A 392, 1733–1741 (2013)

    Article  MathSciNet  Google Scholar 

  39. Wang, D.: Numerical methods for fractional euler-lagrange equations and space fractional Schrödinger equations. Ph.D. thesis, Xiantan University (2013)

  40. Wang, D., Xiao, A., Yang, W.: Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 242, 670–681 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. (2014) doi:10.1016/j.jcp.2014.03.037

  42. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  Google Scholar 

  43. Wang, T., Nie, T., Zhang, L.: Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system. J. Comput. Appl. Math. 231, 745–759 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wei, L., He, Y., Zhang, X., Wang, S.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59, 28–34 (2012)

    Article  MathSciNet  Google Scholar 

  45. Wei, L., Zhang, X., Kumar, S., Yildirim, A.: A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system. Comput. Math. Appl. 64, 2603–2615 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Xie, S., Li, G., Yi, S.: Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Engrg. 198, 1052–1060 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model 34(1), 200–218 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yang, Q., Turner, I., Liu, F., Ilis, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33, 1159–1180 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  49. Zhang, F., et al.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  50. Zhang, H., Liu, F., Anh, V.: Galerkin finite element approximations of symmetric space-fractional partial differential equations. Appl. Math. Comput. 217(6), 2534–2545 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengde Wang.

Additional information

This work was supported by NSF of China (Nos. 91130003 and 11371157) and the Fundamental Research Funds for the Central Universities (No. 2013TS137).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Huang, C. A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation. Numer Algor 69, 625–641 (2015). https://doi.org/10.1007/s11075-014-9917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9917-x

Keywords

Navigation