Skip to main content

Rigorous high-precision computation of the Hurwitz zeta function and its derivatives

Abstract

We study the use of the Euler-Maclaurin formula to numerically evaluate the Hurwitz zeta function ΞΆ(s, a) for \(s, a \in \mathbb {C}\), along with an arbitrary number of derivatives with respect to s, to arbitrary precision with rigorous error bounds. Techniques that lead to a fast implementation are discussed. We present new record computations of Stieltjes constants, Keiper-Li coefficients and the first nontrivial zero of the Riemann zeta function, obtained using an open source implementation of the algorithms described in this paper.

This is a preview of subscription content, access via your institution.

References

  1. Adell, J.A.: Estimates of generalized Stieltjes constants with a quasi-geometric rate of decay. Proc. R. Soc. A 468, 1356–1370 (2012)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  2. Bailey, D.H., Borwein, J.M. In: B. Engquist, W. Schmid, P. W. Michor (eds.) : Experimental mathematics: recent developments and future outlook, pp 51–66. Springer (2000)

  3. Bernstein, D.J.: Fast multiplication and its applications. Algorithmic Number Theory 44, 325–384 (2008)

    Google ScholarΒ 

  4. Bloemen, R.: Even faster ΞΆ(2n) calculation! (2009). http://remcobloemen.nl/2009/11/even-faster-zeta-calculation.html http://remcobloemen.nl/2009/11/even-faster-zeta-calculation.html

  5. Bogolubsky, A.I., Skorokhodov, S.L.: Fast evaluation of the hypergeometric function p F pβˆ’1(a;b;z) at the singular point z=1 by means of the Hurwitz zeta function ΞΆ(Ξ±,s). Program. Comput. Softw. 32(3), 145–153 (2006)

    ArticleΒ  MATHΒ  Google ScholarΒ 

  6. Bohman, J., FrΓΆberg C-E.: The Stieltjes function – definition and properties. Math. Comput. 51(183), 281–289 (1988)

    MATHΒ  Google ScholarΒ 

  7. Borwein, J.M., Bradley, D.M., Crandall, R.E.: Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 121, 247–296 (2000)

    ArticleΒ  MATHΒ  MathSciNetΒ  Google ScholarΒ 

  8. Borwein, P.: An efficient algorithm for the Riemann zeta function. Canadian Mathematical Society Conference Proceedings 27, 29–34 (2000)

    Google ScholarΒ 

  9. Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. J. ACM 25(4), 581–595 (1978)

    ArticleΒ  MATHΒ  MathSciNetΒ  Google ScholarΒ 

  10. Coffey, M.W.: An efficient algorithm for the Hurwitz zeta and related functions. J. Comput. Appl. Math. 225(2), 338–346 (2009)

    ArticleΒ  MATHΒ  MathSciNetΒ  Google ScholarΒ 

  11. Arias de Reyna, J.: Asymptotics of Keiper-Li coefficients. Functiones et Approximatio Commentarii Mathematici 45(1), 7–21 (2011)

    ArticleΒ  MATHΒ  MathSciNetΒ  Google ScholarΒ 

  12. The GMP development team: GMP: The GNU multiple precision arithmetic library. http://www.gmplib.org

  13. The MPIR development team: MPIR: Multiple Precision Integers and Rationals. http://www.mpir.org

  14. Edwards H.M.: Riemann’s zeta function. Academic Press (1974)

  15. Finck, T., Heinig, G., Rost, K.: An inversion formula and fast algorithms for Cauchy-Vandermonde matrices. Linear Algebra Appl. 183, 179–191 (1993)

    ArticleΒ  MATHΒ  MathSciNetΒ  Google ScholarΒ 

  16. Flajolet, P., Vardi, I.: Zeta function expansions of classical constants. Unpublished manuscript (1996). http://algo.inria.fr/flajolet/Publications/landau.ps

  17. Fousse, L., Hanrot, G., LefΓ¨vre, V., PΓ©lissier, P., Zimmermann, P.: MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding. ACM Trans. Math. Softw.” 33(2), 13:1–13:15 (June 2007) http://mpfr.org

    Google ScholarΒ 

  18. Gould, H.: Series transformations for finding recurrences for sequences. Fibonacci Quarterly 28, 166–171 (1990)

    MATHΒ  MathSciNetΒ  Google ScholarΒ 

  19. Haible, B., Papanikolaou, T.: Algorithmic Number Theory: Third International Symposium. In: Buhler, J. P. (ed.) Fast multiprecision evaluation of series of rational numbers, Vol. 1423, pp 338–350. Springer (1998)

  20. Hart, W.B.: Fast Library for Number Theory: An Introduction, In: Proceedings of the Third international congress conference on Mathematical software, ICMS’10, pp 88–91. Springer-Verlag, Berlin, Heidelberg (2010). http://flintlib.org

    Google ScholarΒ 

  21. Harvey, D., Brent, R.P.: Fast computation of Bernoulli, Tangent and Secant numbers. Springer Proceedings in Mathematics & Statistics 50, 127–142 (2013) http://arxiv.org/abs/1108.0286

    MathSciNetΒ  Google ScholarΒ 

  22. Hiary, G.: Fast methods to compute the Riemann zeta function. Ann. math. 174, 891–946 (2011)

    ArticleΒ  MATHΒ  MathSciNetΒ  Google ScholarΒ 

  23. Wofram Research Inc: Some Notes on Internal Implementation (section of the online documentation for Mathematica 9.0) (2013). http://reference.wolfram.com/mathematica/tutorial/SomeNotesOnInternalImplementation.html

  24. Johansson, F.: Arb: a C library for ball arithmetic. ACM Communications in Computer Algebra 47, 166–169 (2013). December

    ArticleΒ  MATHΒ  Google ScholarΒ 

  25. Keiper, J.B.: Power series expansions of Riemann’s ΞΎ function. Math. Comput. 58 (198), 765–773 (1992)

    MATHΒ  MathSciNetΒ  Google ScholarΒ 

  26. Knessl, C., Coffey, M.: An asymptotic form for the Stieltjes constants Ξ³ k (a) and for a sum S Ξ³ (n) appearing under the Li criterion. Math. Comput. 80(276), 2197–2217 (2011)

    ArticleΒ  MATHΒ  MathSciNetΒ  Google ScholarΒ 

  27. Knessl, C., Coffey, M.: An effective asymptotic formula for the Stieltjes constants. Math. Comput. 80(273), 379–386 (2011)

    ArticleΒ  MATHΒ  MathSciNetΒ  Google ScholarΒ 

  28. Kreminski, R.: Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants. Math. Comput. 72(243), 1379–1397 (2003)

    ArticleΒ  MATHΒ  MathSciNetΒ  Google ScholarΒ 

  29. Li, X.-J.: The positivity of a sequence of numbers and the Riemann Hypothesis. Math. Comput. 65(2), 325–333 (1997)

    MATHΒ  Google ScholarΒ 

  30. Matiyasevich, Y.: An artless method for calculating approximate values of zeros of Riemann’s zeta function (2012). http://logic.pdmi.ras.ru/~yumat/personaljournal/artlessmethod/

  31. Matiyasevich, Y., Beliakov, G.: Zeroes of Riemann’s zeta function on the critical line with 20000 decimal digits accuracy. http://dro.deakin.edu.au/view/DU:30051725?print_friendly=true (2011)

  32. Odlyzko, A.M., SchΓΆnhage, A.: Fast algorithms for multiple evaluations of the Riemann zeta function. Trans. the Am. Math. Soc. 309(2), 797–809 (1988)

    ArticleΒ  MATHΒ  Google ScholarΒ 

  33. Olver, F.W.J.: Asymptotics and Special Functions. A K Peters, Wellesley, MA (1997)

    MATHΒ  Google ScholarΒ 

  34. PΓ©termann, Y.-F.S, RΓ©my, J.-L.: Arbitrary precision error analysis for computing ΞΆ(s) with the Cohen-Olivier algorithm: complete description of the real case and preliminary report on the general case. Rapport de recherche, RR-5852, INRIA, 2006. http://hal.inria.fr/inria-00070174

  35. Stein, W.A.: Sage Mathematics Software. The Sage Development Team (2013). http://www.sagemath.org

  36. van der Hoeven, J.: Making fast multiplication of polynomial numerically stable. Technical Report 2008-02, UniversitΓ© Paris-Sud, Orsay, France (2008)

  37. van der Hoeven, J.: Ball arithmetic. Technical report, HAL, 2009. http://hal.archives-ouvertes.fr/hal-00432152/fr/

  38. VepΕ‘tas, L.: An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions. Numerical Algorithms 47(3), 211–252 (2008)

    ArticleΒ  MATHΒ  MathSciNetΒ  Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Johansson.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansson, F. Rigorous high-precision computation of the Hurwitz zeta function and its derivatives. Numer Algor 69, 253–270 (2015). https://doi.org/10.1007/s11075-014-9893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9893-1

Keywords

  • Hurwitz zeta function
  • Riemann zeta function
  • Arbitrary-precision arithmetic
  • Rigorous numerical evaluation
  • Fast polynomial arithmetic
  • Power series

PAC Codes

  • 65D20
  • 68W30
  • 33F05
  • 11-04
  • 11M06
  • 11M35