Abstract
We study the use of the Euler-Maclaurin formula to numerically evaluate the Hurwitz zeta function ΞΆ(s, a) for \(s, a \in \mathbb {C}\), along with an arbitrary number of derivatives with respect to s, to arbitrary precision with rigorous error bounds. Techniques that lead to a fast implementation are discussed. We present new record computations of Stieltjes constants, Keiper-Li coefficients and the first nontrivial zero of the Riemann zeta function, obtained using an open source implementation of the algorithms described in this paper.
This is a preview of subscription content, access via your institution.
References
Adell, J.A.: Estimates of generalized Stieltjes constants with a quasi-geometric rate of decay. Proc. R. Soc. A 468, 1356β1370 (2012)
Bailey, D.H., Borwein, J.M. In: B. Engquist, W. Schmid, P. W. Michor (eds.) : Experimental mathematics: recent developments and future outlook, pp 51β66. Springer (2000)
Bernstein, D.J.: Fast multiplication and its applications. Algorithmic Number Theory 44, 325β384 (2008)
Bloemen, R.: Even faster ΞΆ(2n) calculation! (2009). http://remcobloemen.nl/2009/11/even-faster-zeta-calculation.html http://remcobloemen.nl/2009/11/even-faster-zeta-calculation.html
Bogolubsky, A.I., Skorokhodov, S.L.: Fast evaluation of the hypergeometric function p F pβ1(a;b;z) at the singular point z=1 by means of the Hurwitz zeta function ΞΆ(Ξ±,s). Program. Comput. Softw. 32(3), 145β153 (2006)
Bohman, J., FrΓΆberg C-E.: The Stieltjes function β definition and properties. Math. Comput. 51(183), 281β289 (1988)
Borwein, J.M., Bradley, D.M., Crandall, R.E.: Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 121, 247β296 (2000)
Borwein, P.: An efficient algorithm for the Riemann zeta function. Canadian Mathematical Society Conference Proceedings 27, 29β34 (2000)
Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. J. ACM 25(4), 581β595 (1978)
Coffey, M.W.: An efficient algorithm for the Hurwitz zeta and related functions. J. Comput. Appl. Math. 225(2), 338β346 (2009)
Arias de Reyna, J.: Asymptotics of Keiper-Li coefficients. Functiones et Approximatio Commentarii Mathematici 45(1), 7β21 (2011)
The GMP development team: GMP: The GNU multiple precision arithmetic library. http://www.gmplib.org
The MPIR development team: MPIR: Multiple Precision Integers and Rationals. http://www.mpir.org
Edwards H.M.: Riemannβs zeta function. Academic Press (1974)
Finck, T., Heinig, G., Rost, K.: An inversion formula and fast algorithms for Cauchy-Vandermonde matrices. Linear Algebra Appl. 183, 179β191 (1993)
Flajolet, P., Vardi, I.: Zeta function expansions of classical constants. Unpublished manuscript (1996). http://algo.inria.fr/flajolet/Publications/landau.ps
Fousse, L., Hanrot, G., LefΓ¨vre, V., PΓ©lissier, P., Zimmermann, P.: MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding. ACM Trans. Math. Softw.β 33(2), 13:1β13:15 (June 2007) http://mpfr.org
Gould, H.: Series transformations for finding recurrences for sequences. Fibonacci Quarterly 28, 166β171 (1990)
Haible, B., Papanikolaou, T.: Algorithmic Number Theory: Third International Symposium. In: Buhler, J. P. (ed.) Fast multiprecision evaluation of series of rational numbers, Vol. 1423, pp 338β350. Springer (1998)
Hart, W.B.: Fast Library for Number Theory: An Introduction, In: Proceedings of the Third international congress conference on Mathematical software, ICMSβ10, pp 88β91. Springer-Verlag, Berlin, Heidelberg (2010). http://flintlib.org
Harvey, D., Brent, R.P.: Fast computation of Bernoulli, Tangent and Secant numbers. Springer Proceedings in Mathematics & Statistics 50, 127β142 (2013) http://arxiv.org/abs/1108.0286
Hiary, G.: Fast methods to compute the Riemann zeta function. Ann. math. 174, 891β946 (2011)
Wofram Research Inc: Some Notes on Internal Implementation (section of the online documentation for Mathematica 9.0) (2013). http://reference.wolfram.com/mathematica/tutorial/SomeNotesOnInternalImplementation.html
Johansson, F.: Arb: a C library for ball arithmetic. ACM Communications in Computer Algebra 47, 166β169 (2013). December
Keiper, J.B.: Power series expansions of Riemannβs ΞΎ function. Math. Comput. 58 (198), 765β773 (1992)
Knessl, C., Coffey, M.: An asymptotic form for the Stieltjes constants Ξ³ k (a) and for a sum S Ξ³ (n) appearing under the Li criterion. Math. Comput. 80(276), 2197β2217 (2011)
Knessl, C., Coffey, M.: An effective asymptotic formula for the Stieltjes constants. Math. Comput. 80(273), 379β386 (2011)
Kreminski, R.: Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants. Math. Comput. 72(243), 1379β1397 (2003)
Li, X.-J.: The positivity of a sequence of numbers and the Riemann Hypothesis. Math. Comput. 65(2), 325β333 (1997)
Matiyasevich, Y.: An artless method for calculating approximate values of zeros of Riemannβs zeta function (2012). http://logic.pdmi.ras.ru/~yumat/personaljournal/artlessmethod/
Matiyasevich, Y., Beliakov, G.: Zeroes of Riemannβs zeta function on the critical line with 20000 decimal digits accuracy. http://dro.deakin.edu.au/view/DU:30051725?print_friendly=true (2011)
Odlyzko, A.M., SchΓΆnhage, A.: Fast algorithms for multiple evaluations of the Riemann zeta function. Trans. the Am. Math. Soc. 309(2), 797β809 (1988)
Olver, F.W.J.: Asymptotics and Special Functions. A K Peters, Wellesley, MA (1997)
PΓ©termann, Y.-F.S, RΓ©my, J.-L.: Arbitrary precision error analysis for computing ΞΆ(s) with the Cohen-Olivier algorithm: complete description of the real case and preliminary report on the general case. Rapport de recherche, RR-5852, INRIA, 2006. http://hal.inria.fr/inria-00070174
Stein, W.A.: Sage Mathematics Software. The Sage Development Team (2013). http://www.sagemath.org
van der Hoeven, J.: Making fast multiplication of polynomial numerically stable. Technical Report 2008-02, UniversitΓ© Paris-Sud, Orsay, France (2008)
van der Hoeven, J.: Ball arithmetic. Technical report, HAL, 2009. http://hal.archives-ouvertes.fr/hal-00432152/fr/
VepΕ‘tas, L.: An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions. Numerical Algorithms 47(3), 211β252 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Johansson, F. Rigorous high-precision computation of the Hurwitz zeta function and its derivatives. Numer Algor 69, 253β270 (2015). https://doi.org/10.1007/s11075-014-9893-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-014-9893-1
Keywords
- Hurwitz zeta function
- Riemann zeta function
- Arbitrary-precision arithmetic
- Rigorous numerical evaluation
- Fast polynomial arithmetic
- Power series
PAC Codes
- 65D20
- 68W30
- 33F05
- 11-04
- 11M06
- 11M35