Skip to main content
Log in

Adaptive time-stepping for the strong numerical solution of stochastic differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Models based on stochastic differential equations are of high interest today due to their many important practical applications. Thus the need for efficient and accurate numerical methods to approximate their solution. In this paper, we propose several adaptive time-stepping strategies for the strong numerical solution of stochastic differential equations in Itô form, driven by multiple Wiener processes satisfying the commutativity condition. The adaptive schemes are based on I and PI control, and allow arbitrary values of the stepsize. The explicit Milstein method is applied to approximate the solution of the problem and the adaptive implementations are based on estimates of the local error obtained using Richardson extrapolation. Numerical tests on several models arising in applications show that our adaptive time-stepping schemes perform better than the fixed stepsize alternative and an adaptive Brownian tree time-stepping strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Springer-Verlag, Berlin (1992)

    Book  MATH  Google Scholar 

  2. Gardiner, C.W.: methods, Stochastic a handbook for the natural and social sciences. Springer, Berlin (2009)

    Google Scholar 

  3. van Kampen, N.G.: Stochastic processes in physics and chemistry. North-Holland, Amsterdam (2007)

    Google Scholar 

  4. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review 43(3), 525–546 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations I, 2nd revised edition. Springer, Berlin (2009)

    Google Scholar 

  6. Burrage, K., Burrage, P.M., Tian, T.: Numerical methods for strong solutions of stochastic differential equations: an overview. Proc. R. Soc. Lond. A 460(2041), 373–402 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burrage, K., Hancock, J., Leier, A., Nicolau, D.V.: Modelling and simulation techniques for membrane biology. Brief. Bioinform. 8(4), 234–244 (2007)

    Article  Google Scholar 

  8. Salis, H., Kaznessis, Y.N.: An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks. J. Chem. Phys. 123, 214106 (2005)

    Article  Google Scholar 

  9. Salis, H., Sotiropoulos, V., Kaznessis, Y.N.: Multiscale Hy3S: Hybrid stochastic simulation for supercomputers. BMC Bioinform 7, 93 (2006)

    Article  Google Scholar 

  10. Lamba, H.: An adaptive time-stepping algorithm for stochastic differential equations. J. Comput. Appl. Math. 161, 417–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mauthner, S.: Step size control in the numerical solution of stochastic differential equations. J. Comput. Appl. Math. 100, 93–109 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hofmann, N., Müller-Gronbach, T., Ritter, K.: The optimal discretization of stochastic differential equations. J. Complexity 17, 117–153 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Burrage, K., Burrage, P.M.: 3. SIAM J. Sci. Comput. 24, 848–864 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Szepessy, A., Tempone, R., Zouraris, G.: Adaptive weak approximation of stochastic differential equations. Commun. Pure Appl. Math. 54(10), 1169–1214 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gaines, J.G., Lyons, T.J.: Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57, 1455–1484 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mauthner, S.: Schrittweitensteuerung bei der numerischen Losung stochastischer Differentialgleichungen̈, PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany (1999)

  17. Glasserman, P.: Monte Carlo methods in financial engineering. Springer, New York (2010)

    Google Scholar 

  18. Söderlind, G.: Automatic control and adaptive time-stepping. Numer. Algoritm 31, 281–310 (2002)

    Article  MATH  Google Scholar 

  19. Söderlind, G.: Digital filters in adaptive time-stepping. ACM Trans. Math. Software 29(1), 1–26 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Burrage, P.M., Herdiana, R., Burrage, K.: Adaptive stepsize based on control theory for stochastic differential equations. J. Comput. Appl. Math. 170, 317–336 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Burrage, P. M.: Runge-Kutta methods for stochastic differential equations Ph.D. dissertation, University of Queensland (1999)

  22. Giles, M.B.: Multi-level Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 343–358. Springer (2008)

  24. Giles, M.B.: Multilevel Monte Carlo methods. In: Monte Carlo and Quasi-Monte Carlo methods 2012, pp. 79–98. Springer (2013)

  25. Beretta, E., Kuang, Y.: Modeling and analysis of a marine bacteriophage infection. Math. Biosci. 149, 57–76 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Carletti, M.: Numerical solution of stochastic differential problems in the biosciences. J. Comput. Appl. Math. 185, 422–440 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Carletti, M., Burrage, K., Burrage, P.: Numerical simulation of stochastic ordinary differential equations in biomathematical modelling. Math. Comput. Simulation 64, 271–277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716 (2001)

    Article  Google Scholar 

  29. Komori, Y.: Weak second order stochastic Runge-Kutta methods for commutative stochastic differential equations. J. Comput. Appl. Math 203, 57–79 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Komori, Y., Burrage, K.: Supplement: Efficient weak second order stochastic Runge-Kutta methods for non-commutative Stratonovich stochastic differential equations. J. Comput. Appl. Math. 235, 5326–5329 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rössler, A.: Second order Runge-Kutta methods for Itô stochastic differential equations. SIAM J. Num. Anal. 47(3), 1713–1738 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Ilie.

Additional information

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilie, S., Jackson, K.R. & Enright, W.H. Adaptive time-stepping for the strong numerical solution of stochastic differential equations. Numer Algor 68, 791–812 (2015). https://doi.org/10.1007/s11075-014-9872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9872-6

Keywords

Navigation