Skip to main content
Log in

Estimation of unknown boundary functionsin an inverse heat conduction problem using a mollified marching scheme

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, a one-dimensional inverse heat conduction problem with unknown nonlinear boundary conditions is studied. In many practical heat transfer situations, the heat transfer coefficient depends on the boundary temperature and the dependence has a complicated or unknown structure. For this reason highly nonlinear boundary conditions are imposed involving both the flux and the temperature. A numerical procedure based on the mollification method and the space marching scheme is developed to solve numerically the proposed inverse problem. The stability and convergence of numerical solutions are investigated and the numerical results are presented and discussed for some test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cannon, J.R.: The one-Dimensional Heat Equation. Addison-Wesley (1984)

  2. Özisik, M.N.: Heat Conduction. John Wiley & Sons INC (1993)

  3. Saldanha da Gama, R.M.: Simulation of the steady-state energy transfer in rigid bodies, with convective/radiative boundary conditions, employing a minimum principle. J. Comp. Phys. 99, 310–320 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Wolf, D.H., Incropera, F.P., Viskanta, R.: Jet impingement boiling. Adv. Heat Transf. 23, 1–132 (1993)

    Article  Google Scholar 

  5. Kaiser, T., Troltzsch F.: An inverse problem arising in the steel cooling process. Wissenschaftliche Zeitung TU Karl-Marx-Stadt 29, 212–218 (1987)

    MATH  Google Scholar 

  6. Beck, J.V., Blackwell, B.: Inverse Heat Conduction: Ill-Posed Problems. Wiley Interscience, New York (1985)

    MATH  Google Scholar 

  7. Cannon, J.R, Zachman, D.: Parameter Determination in Parabolic Differential equation from overspecified boundary data. Int. J. Eng. Sci. 20, 779–788 (1982)

    Article  MATH  Google Scholar 

  8. Rosch, A.: Identification of nonlinear heat transfer laws by optimal control. Numer. Funct. Anal. Optim. 15, 417–434 (1994)

    Article  MathSciNet  Google Scholar 

  9. Rosch, A.: Stability estimates for the identification of nonlinear heat laws. Inverse Probl. 12, 743–756 (1996)

    Article  MathSciNet  Google Scholar 

  10. Rosch, A.: A Gauss-Newton method for the identification of non-linear heat transfer laws. Int. Ser. Numer. Math 139, 217–230 (2002)

    MathSciNet  Google Scholar 

  11. Onyango, T.T.M., Ingham, D.B., Lesnic, D.: Reconstruction of boundary condition laws in heat conduction using the boundary element method. Comput. Math. Appl. 57, 153–168 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bialecki, R., Divo, E., Kassab, A,J.: Reconstruction of time-dependent boundary heat flux by a BEM based inverse algorithm. Eng. Anal. Bound. Elem. 30, 767–773 (2006)

    Article  MATH  Google Scholar 

  13. Garshasbi, M., Damirchi, J., Reihani, P.: Parameter estimation in an inverse initial-boundary value problem of heat equation. J. Adv. Res. Diff. Equ. 2, 49–60 (2010)

    Google Scholar 

  14. Garshasbi, M., Reihani, P., Dastour, H.: A stable numerical solution of a class of semi-linear Cauchy problems. J. Adv. Res. Dyn. Cont. Sys. 4, 56–67 (2012)

    MathSciNet  Google Scholar 

  15. Murio, D.A.: Mollification and space marching. In: Woodbury, K (ed.) Inverse Engineering Handbook. CRC Press (2002)

  16. Mejia, C.E., Murio, D.A., Zhan, S.: Some applications of the mollification method. In: Lassonde, M. (ed.) App. Opti. Math Eco., pp. 213–222. Physica-Verlag (2001)

  17. Acosta, C.D., Mejia, C.E.: Stabilization of explicit methods for convection diffusion equations by discrete mollification. Comput. Math. Appl. 55, 368–380 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Acosta, C.D., Mejia, C.E.: Approximate solution of hyperbolic conservation laws by discrete mollification. Appl. Numer. Math. 59, 2256–2265 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Garshasbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garshasbi, M., Dastour, H. Estimation of unknown boundary functionsin an inverse heat conduction problem using a mollified marching scheme. Numer Algor 68, 769–790 (2015). https://doi.org/10.1007/s11075-014-9871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9871-7

Keywords

Navigation