Skip to main content
Log in

Convergence of a finite volume element method for a generalized Black-Scholes equation transformed on finite interval

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we present a convergence analysis of a positivity-preserving fitted finite volume element method (FVEM) for a generalized Black-Scholes equation transformed on finite interval, degenerating on both boundary points. We first formulate the FVEM as a Petrov-Galerkin finite element method using a spatial discretization, previously proposed by the author. The Gärding coercivity of the corresponding discrete bilinear form is established. We obtain stability and error bounds for the solution of the fully-discrete system. Analysis of the impact of the finite domain transformation on the numerical solution of the original problem is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Pironneau, O.: Computational Methods for Option Pricing. SIAM Frontiers in Applied Mathematics (2005)

  2. Angermann, L.: Discretization of the Black-Scholes operator with a natural left-hand side boundary condition. Far East J. Appl. Math. 30(1), 1–41 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Angermann, L., Wang, S.: Convergence of a fitted finite volume method for the penalized Black-Scholes equation governing European and American option pricing. Numer. Math. 106, 1–40 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chernogorova, T., Valkov, R.: Finite volume difference scheme for a degenerate parabolic equation in the zero-coupon bond pricing. Math. Comp. Model. 54, 2659–2671 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duffy, D.: Finite Difference Methods in Financial Engineering: A Partial Differential Approach. Wiley (2006)

  6. Ehrhardt, M., Mickens, R.: A fast, stable and accurate numerical method for the Black-Scholes equation of American options. Int. J. Theor. Appl. Finance 11(5), 471–501 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grosch, C.E., Orszag, S.A.: Numerical solution of problems in unbounded regions: coordinate transforms. J. Comput. Phys. 25, 273–296 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. in’t Hout, K.J., Volders, K.: Stability and convergence analysis of discretizations of the Black-Scholes PDE with the linear boundary condition. IMA J. Numer. Anal. (2013). doi:10.1093/imanum/drs050

    MATH  Google Scholar 

  9. Gyulov, T., Valkov, R.: Classical and weak solutions for two models in mathematical finance. AIP Conf. Proc. 1410, 195–202 (2011)

    Article  MathSciNet  Google Scholar 

  10. Han, H., Wu, X.: A fast numerical method for the Black-Scholes equations of American options. SIAM J. Numer. Anal. 41, 2081–2095 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mikula, K., Ševčovič, D., Stehlíková, B.: Analytical and Numerical Methods for Pricing Financial Derivatives. Nova Science Publishers Inc, Hauppauge (2011)

    Google Scholar 

  12. Kangro, R., Nicolaides, R.: Far field boundary condition for Black-Scholes equations. SIAM J. Numer. Anal. 38(4), 1357–1368 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tavella, D., Randall, C.: Pricing Financial Instruments. Wiley, New York (2000)

    Google Scholar 

  14. Valkov, R.: Fitted finite volume method for a generalized Black-Scholes equation transformed on finite interval. Numer. Algor. (2013). doi:10.1007/s11075-013-9701-3

    Google Scholar 

  15. Windcliff, H., Forsyth, P.A., Vetzal, K.R.: Analysis of the stability of the linear boundary condition for the Black-Scholes equation. J. Comput. Finance 8, 65–92 (2004)

    Google Scholar 

  16. Wilmott, P., Howison, S., Dewynne, J.: The Mathematics of Financial Derivatives. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  17. Wang, S.: A novel fitted volume method for the Black-Scholes equation governing option pricing. IMA J. Numer. Anal. 24, 699–720 (2004)

    Article  MathSciNet  Google Scholar 

  18. Zhu, Y.-l., Wu, X., Chern, I.-l.: Derivative Securities and Difference Methods. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslav Valkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valkov, R. Convergence of a finite volume element method for a generalized Black-Scholes equation transformed on finite interval. Numer Algor 68, 61–80 (2015). https://doi.org/10.1007/s11075-014-9838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9838-8

Keywords

Navigation