Numerical Algorithms

, Volume 65, Issue 3, pp 705–721 | Cite as

A highly accurate explicit symplectic ERKN method for multi-frequency and multidimensional oscillatory Hamiltonian systems

Original Paper


The numerical integration of Hamiltonian systems with multi-frequency and multidimensional oscillatory solutions is encountered frequently in many fields of the applied sciences. In this paper, we firstly summarize the extended Runge–Kutta–Nyström (ERKN) methods proposed by Wu et al. (Comput. Phys. Comm. 181:1873–1887, (2010)) for multi-frequency and multidimensional oscillatory systems and restate the order conditions and symplecticity conditions for the explicit ERKN methods. Secondly, we devote to exploring the explicit symplectic multi-frequency and multidimensional ERKN methods of order five based on the symplecticity conditions and order conditions. A five-stage explicit symplectic multi-frequency and multidimensional ERKN method of order five with some small residuals is proposed and its stability and phase properties are analyzed. It is shown that the new method is dispersive of order six. Numerical experiments are carried out and the numerical results demonstrate that the new method is much more efficient than the methods appeared in the scientific literature.


Explicit multi-frequency and multidimensional ERKN methods Higher-order symplectic methods Stability and phase properties Multi-frequency and multidimensional oscillatory Hamiltonian systems 

Mathematics Subject Classifications (2010)

Primary 65L05 65L06 65P10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Franco, J.M.: Exponentially fitted explicit Runge–Kutta–Nyström methods. J. Comput. Appl. Math. 167, 1–19 (2004)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Wu, X., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Comm. 180, 2250–2257 (2009)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Wu, X., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Comm. 181, 1873–1887 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Wu, X., Wang, B.: Multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems. Comput. Phys. Comm. 181, 1955–1962 (2010)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Wang, B., Wu, X.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376, 1185–1190 (2012)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Wang, B., Wu, X., Zhao, H.: Novel improved multidimensional Strömer-Verlet formulas with applications to four aspects in scientific computation. Math. Comput. Modell. 57, 857–872 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Wang, B., Liu, K., Wu, X.: A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comput. Phys. 243, 210–223 (2013)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer-Verlag, Berlin, Heidelberg (2013)CrossRefMATHGoogle Scholar
  11. 11.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms. Springer-Verlag, Berlin, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Ruth, R.D.: A canonical integration technique. IEEE Trans. Nuclear Sci. NS 30(4), 2669–2671 (1983)CrossRefGoogle Scholar
  13. 13.
    Yoshida, H.: Construction of high order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Calvo, M.P., Sanz-Serna, J.M.: Order conditions for canonical Runge–Kutta–Nyström methods. BIT 32, 131–142 (1992)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian problems: an overview. Acta Numer. 1, 243–286 (1992)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Simos, T.E., Vigo-Aguiar, J.: Exponentially fitted symplectic integrator. Phys. Rev. E 67, 016701–7 (2003)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Okunbor, D., Skeel, R.D.: Canonical Runge–Kutta–Nyström methods of order 5 and 6. J. Comput. Appl. Math 51, 375–382 (1994)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Cohen, D., Hairer, E., Lubich, C.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numer. Math. 45, 287–305 (2005)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Van de Vyver, H.: A symplectic exponentially fitted modified Runge–Kutta–Nyström methods for the numerical integration of orbital problems. New Astron. 10, 261–269 (2005)CrossRefGoogle Scholar
  20. 20.
    Wu, X., Wang, B., Xia, J.: Explicit symplectic multidimensional exponential fitting modified Runge–Kutta–Nyström methods. BIT 52, 773–795 (2012)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Van der Houwen, P.J., Sommeijer, B.P.: Explicit Runge–Kutta(–Nyström) methods with reduced phase errors for computing oscillating solution. SIAM J. Numer. Anal. 24, 595–617 (1987)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Van de Vyver, H.: Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Wu, X.: A note on stability of multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems. Appl. Math. Modell 36, 6331–6337 (2012)CrossRefGoogle Scholar
  24. 24.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, Berlin (1993)MATHGoogle Scholar
  25. 25.
    García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1999)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problem. In: Applied Mathematics and Matematical Computation, vol. 7. Chapman & Hall, London (1994)Google Scholar
  28. 28.
    Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics, Applied Mathematical Sciences, vol. 34. Springer, New York (1981)CrossRefGoogle Scholar
  29. 29.
    Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods, Applied Mathematical Sciences, vol. 114. Springer, New York (1996)CrossRefGoogle Scholar
  30. 30.
    Jimánez, S., Vázquez, L.: Analysis of four numerical schemes for a nonlinear Klein-Gordon equation. Appl. Math. Comput. 35, 61–93 (1990)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsQingdao University of Science and TechnologyQingdaoPeople’s Republic of China
  2. 2.Department of Mathematics, State Key Laboratory for Novel Software Technology at Nanjing UniversityNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations