Skip to main content
Log in

Interpolation on the disk

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript


Bivariate polynomials defined on the unit disk are used to reconstruct a wavefront from a data sample. We analyze the interpolation problem arising in critical sampling, that is, using a minimal sample. The interpolant is expressed as a linear combination of Zernike polynomials, whose coefficients represent relevant optical features of the wavefront. We study the propagation of errors of the polynomial values and their coefficients, obtaining bounds for the Lebesgue constants and condition numbers. A node distribution leading to low Lebesgue constants and condition numbers for degrees up to 20 is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Bloom, T., Bos, L., Christensen, C., Levenberg, N.: Polynomial interpolation of holomorphic functions in C and C n. Rocky Mountain J. Math. 22(2), 441–470 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bloom, T., Bos, L.P., Calvi, J.P., Levenberg, N.: Polynomial Interpolation and Approximation in C d, available at, (2011) (update of [1])

  3. Bojanov, B., Xu, Y.: On polynomial interpolation of two variables. J. Approx.Theory 120, 267–282 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bos, L., Sommariva, A., Vianello, M.: Least-squares polynomial approximation on weakly admissible meshes: Disk and triangle. J. Comput. Appl. Math. 235, 660–668 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Briani, M., Sommariva, A., Vianello, M.: Computing Fekete and Lebesgue points: Simplex, square, disk. J. Comput. Appl. Math. 236, 2477–2486 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cuyt, A., Yaman, I., Ibrahimoglu, B.A., Benouahmane, B.: Radial orthogonality and Lebesgue constants on the disk. Numer. Algor. 61, 291–313 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lyche, T., Peña, J.M.: Optimally stable multivariate bases. Adv. Comput. Math. 20, 149–159 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Navarro, R., Arines, J., Rivera, R.: Direct and inverse dicrete Zernike transform. Opt. Express 17, 24269–24281 (2009)

    Article  Google Scholar 

  9. Pap, M., Schipp, F.: Discrete orthogonality of Zernike functions. Math. Pannonica 16, 137–144 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Szegö, G.: Orthogonal polynomials. Colloquium Publ., vol. 23. American Mathematical Society, Providence, Rhode Island (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. M. Carnicer.

Additional information

Partially supported by the Spanish Research Grant MTM2012-31544 and by Gobierno de Aragón and Fondo Social Europeo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carnicer, J.M., Godés, C. Interpolation on the disk. Numer Algor 66, 1–16 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classifications (2010)