Skip to main content
Log in

An accelerated subspace minimization three-term conjugate gradient algorithm for unconstrained optimization

Numerical Algorithms Aims and scope Submit manuscript

Abstract

A three-term conjugate gradient algorithm for large-scale unconstrained optimization using subspace minimizing technique is presented. In this algorithm the search directions are computed by minimizing the quadratic approximation of the objective function in a subspace spanned by the vectors: −g k+1, s k and y k . The search direction is considered as: d k+1 = −g k+1 + a k s k + b k y k , where the scalars a k and b k are determined by minimization the affine quadratic approximate of the objective function. The step-lengths are determined by the Wolfe line search conditions. We prove that the search directions are descent and satisfy the Dai-Liao conjugacy condition. The suggested algorithm is of three-term conjugate gradient type, for which both the descent and the conjugacy conditions are guaranteed. It is shown that, for uniformly convex functions, the directions generated by the algorithm are bounded above, i.e. the algorithm is convergent. The numerical experiments, for a set of 750 unconstrained optimization test problems, show that this new algorithm substantially outperforms the known Hestenes and Stiefel, Dai and Liao, Dai and Yuan and Polak, Ribiére and Poliak conjugate gradient algorithms, as well as the limited memory quasi-Newton method L-BFGS and the discrete truncated-Newton method TN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Al-Bayati, A.Y., Sharif, W.H.: A new three-term conjugate gradient method for unconstrained optimization. Can. J. Sci. Eng. Math. 1(5), 108–124 (2010)

    Google Scholar 

  2. Andrei, N.: An acceleration of gradient descent algorithm with backtracking for unconstrained optimization. Numer. Algoritm. 42, 63–73 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10, 147–161 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Andrei, N.: Acceleration of conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 213, 361–369 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Andrei, N.: A modified Polak-Ribière-Polyak conjugate gradient algorithm for unconstrained optimization. Optim. 60, 1457–1471 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beale, E.M.L.: A derivative of conjugate gradients. In: Lootsma, F.A. (ed.) Numerical Methods for Nonlinear Optimization, pp 39–43. Academic Press, London (1972)

    Google Scholar 

  7. Cheng, W.: A two-term PRP-based descent method. Numer. Funct. Anal. Optim 28, 1217–1230 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Con, A.R., Gould, N., Sartenaer, A., Toint, Ph.L.: On iterated-subspace minimization methods for nonlinear optimization. In: Adams, L., Nazareth, J.L. (eds.) Linear and Nonlinear Conjugate Gradient related methods, SIAM, pp. 50–78 (1996)

  9. Dai, Y.H., Liao, L.Z.: New conjugate conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43, 87–101 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Deng, N.Y., Li, Z.: Global convergence of three terms conjugate gradient methods. Optim. Method Softw. 4, 273–282 (1995)

    Article  Google Scholar 

  12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fletcher, R.: Practical Methods of OptimizationUnconstrained Optimization, Vol. 1. Wiley, New York (1987)

    Google Scholar 

  14. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gilbert, J.C., Lemaréchal, C.: Some numerical experiments with variable storage quasi-Newton algorithm. Math. Program. 45, 407–435 (1989)

    Article  MATH  Google Scholar 

  16. Hager, W.W., Zhang, H.C.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, D.C., Nocedal, J.: On the limited BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, Part 1: Theory. J. Optim. Theor. Appl. 69, 129–137 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Moré, J.J., Thuente, D.J.: On linesearch algorithms with guaranteed sufficient decrease. Mathematics and Computer Science Division Preprint MCS-P153-0590. Argonne National Laboratory. Argonne, IL (1990)

  21. Narushima, Y., Yabe, H., Ford, J.A.: A three-term conjugate gradient method with sufficient descent property for unconstrained optimization. SIAM J. Optim. 21(1), 212–230 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nash, S.G.: User’s guide for TN-TNBC: Fortran routines for nonlinear optimization. Report 397, Mathematical Sciences Department, The John Hopkins University, Baltimore, MD

  23. Nash, S.G., Nocedal, J.: A numerical study of the limited memory BFGS method and the truncated-Newton method for large scale optimization. SIAM J. Optim. 1, 358–372 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nazareth, L.: A conjugate direction algorithm without line search. J. Optim. Theor. Appl. 23, 373–387 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comp. 35, 773–782 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nocedal, J.: Conjugate gradient methods and nonlinear optimization. In: Adams, L., Nazareth, J.L. (eds.) Linear and Nonlinear Conjugate Gradient related methods, SIAM, pp. 9–23 (1996)

  27. Polak, E., Ribière, G.: Note sur la convergence de directions conjuguée. Rev. Francaise Informat Recherche Operationelle, 3e Année, vol. 16, pp. 35–43 (1969)

  28. Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9, 94–112 (1969)

    Article  Google Scholar 

  29. Powell, M.J.D.: Nonconvex Minimization Calculations and the Conjugate Gradient Method. Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, vol. 1066, pp. 122–141, Springer, Berlin (1984)

  30. Stanimirović, P.S., Miladinović, M.B.: Accelerated gradient descent methods with line search. Numer. Algoritm. 54, 503–520 (2010)

    Article  MATH  Google Scholar 

  31. Stoer, J., Yuan, Y.X.: A subspace study on conjugate gradient algorithms. ZAMM. Z. Angew. Math. Mech. 75, 69–77 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev 11, 226–235 (1968)

    Article  MathSciNet  Google Scholar 

  33. Wolfe, P.: Convergence conditions for ascent methods, (II): some corrections. SIAM Rev 13, 185–188 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang, L., Zhou, W., Li, D.H.: A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhang, L., Zhou, W., Li, D.H.: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22, 697–711 (2007)

    Article  MathSciNet  Google Scholar 

  36. Zhang, J., Xiao, Y., Wei, Z.: Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization. Math. Probl. Eng. (2009). Article ID 243290 doi:10.1155/2009/243290

    MathSciNet  Google Scholar 

  37. Zhang, L., Zhou, Y.: A note on the convergence properties of the original three-term Hestenes-Stiefel method. AMO – Adv. Model. Optim. 14, 159–163 (2012)

    Google Scholar 

  38. Zoutendijk, G.: Nonlinear programming, computational methods. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp 38–86. North-Holland, Amsterdam (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neculai Andrei.

Additional information

Dr. Neculai Andrei is member of Academy of Romanian Scientists, Splaiul Independenţei Nr. 54, Sector 5, Bucharest, Romania

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrei, N. An accelerated subspace minimization three-term conjugate gradient algorithm for unconstrained optimization. Numer Algor 65, 859–874 (2014). https://doi.org/10.1007/s11075-013-9718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9718-7

Keywords

Navigation