Skip to main content
Log in

A Jacobi–Davidson type method with a correction equation tailored for integral operators

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We propose two iterative numerical methods for eigenvalue computations of large dimensional problems arising from finite approximations of integral operators, and describe their parallel implementation. A matrix representation of the problem on a space of moderate dimension, defined from an infinite dimensional one, is computed along with its eigenpairs. These are taken as initial approximations and iteratively refined, by means of a correction equation based on the reduced resolvent operator and performed on the moderate size space, to enhance their quality. Each refinement step requires the prolongation of the correction equation solution back to a higher dimensional space, defined from the infinite dimensional one. This approach is particularly adapted for the computation of eigenpair approximations of integral operators, where prolongation and restriction matrices can be easily built making a bridge between coarser and finer discretizations. We propose two methods that apply a Jacobi–Davidson like correction: Multipower Defect-Correction (MPDC), which uses a single-vector scheme, if the eigenvalues to refine are simple, and Rayleigh–Ritz Defect-Correction (RRDC), which is based on a projection onto an expanding subspace. Their main advantage lies in the fact that the correction equation is performed on a smaller space while for general solvers it is done on the higher dimensional one. We discuss implementation and parallelization details, using the PETSc and SLEPc packages. Also, numerical results on an astrophysics application, whose mathematical model involves a weakly singular integral operator, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.A., Mahony, R., Sepulchre, R., Dooren, P.V.: A Grassmann–Rayleigh quotient iteration for computing invariant subspaces. SIAM Rev. 44(1), 57–73 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahues, M., Largillier, A., Limaye, B.V.: Spectral Computations with Bounded Operators. Chapman and Hall, Boca Raton (2001)

    Book  Google Scholar 

  3. Ahues, M., d’Almeida, F.D., Largillier, A., Titaud, O., Vasconcelos, P.: An L 1 refined projection approximate solution of the radiation transfer equation in stellar atmospheres. J. Comput. Appl. Math. 140(1–2), 13–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahues, M., d’Almeida, F.D., Largillier, A., Vasconcelos, P.B.: Defect correction for spectral computations for a singular integral operator. Commun. Pure Appl. Anal. 5(2), 241–250 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia (2000)

  6. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010)

  7. Chatelin, F.: Spectral Approximation of Linear Operators. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  8. d’Almeida, F.D., Vasconcelos, P.B.: Convergence of multipower defect correction for spectral computations of integral operators. Appl. Math. Comput. 219(4), 1601–1606 (2012)

    Article  MathSciNet  Google Scholar 

  9. Falgout, R.D., Yang, U.M.: Hypre: A library of high performance preconditioners. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) Computational Science - ICCS 2002, International Conference, Amsterdam, The Netherlands, April 21–24, 2002. Proceedings, Part III, Lecture Notes in Computer Science, vol. 2331, pp. 632–641. Springer (2002)

  10. Henson, V.E., Yang, U.M.: BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hernandez, V., Roman, J.E., Tomas, A., Vidal, V.: SLEPc Users Manual. Tech. Rep. DSIC-II/24/02 - Revision 3.1, D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (2010)

  13. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

  14. Simoncini, V., Eldén, L.: Inexact Rayleigh quotient-type methods for eigenvalue computations. BIT 42(1), 159–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42(2), 267–293 (2000)

    Article  MathSciNet  Google Scholar 

  16. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo B. Vasconcelos.

Additional information

This work was partially supported by European Regional Development Fund through COMPETE, FCT—Fundação para a Ciência e a Tecnologia through CMUP—Centro de Matemática da Universidade do Porto and Spanish Ministerio de Ciencia e Innovación under projects TIN2009-07519 and AIC10-D-000600.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasconcelos, P.B., d’Almeida, F.D. & Roman, J.E. A Jacobi–Davidson type method with a correction equation tailored for integral operators . Numer Algor 64, 85–103 (2013). https://doi.org/10.1007/s11075-012-9656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9656-9

Keywords

Navigation