Ala, G., Francomano, E.: An improved smoothed particle electromagnetics method in 3D time domain simulations. Int. J. Numer. Model: Electronic Networks, Devices and Fields 25(4), 325–337 (2012)
Article
Google Scholar
Ala, G., Francomano, E.: SPEM modelling on HPC-GRID environment. ACES Appl. Comput. Electromagn. Soc. J. 27(3), 229-237 (2012)
Google Scholar
Ala, G., Francomano, E., Tortorici, A., Spagnuolo, A.: A meshless approach for electromagnetic simulation of metallic carbon nanotubes. J. Math. Chem. 48(1), 72–77 (2010)
MathSciNet
MATH
Article
Google Scholar
Ala, G., Di Blasi, G., Francomano, E.: A numerical meshless particle method in solving the magnetoencefalography forward problem. Int. J. Numer. Model: Electronic Networks, Devices and Fields (2012). doi:10.1002/jnm.1828
MATH
Google Scholar
Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)
MATH
Article
Google Scholar
Cingoski, V., Miyamoto, N., Yamashita, H.: Element-free Galerkin method for electromagnetic field computations. IEEE Trans. Magn. 34(5), 3236–3239 (1998)
Article
Google Scholar
Cooke, S.J., Botton, M., Antonsen, T.M., Levush, B.: A leapfrog formulation of the 3-D ADI-FDTD algorithm. Int. J. Numer. Model: Electronic Networks, Devices and Fields 22, 187–200 (2009)
MATH
Article
Google Scholar
Duan, Y., Lai, S.J., Huang, T.: Coupling projection domain decomposition method and meshless collocation method using radial basis functions in electromagnetics. Prog. Electromagn. Res. Letters 5, 1–12 (2008)
Article
Google Scholar
Fang, J., Parriaux, A., Rentschler, M., Ancey, C.: Improved SPH methods for simulating free surface flows of viscous fluids. Appl. Numer. Math. 59(2), 251–271 (2009)
MathSciNet
MATH
Article
Google Scholar
Fonseca, A.R., Mendes, M.L., Mesquita, R.C., Silva, E.J.: A 3-D radial point interpolation method for meshless time-domain modelling. J. Microw. Optoelectron. Electromagn. Appl. 8(1), 101S–113S (2009)
Google Scholar
Fonseca, A.R., Viana, S.A., Silva, E.J., Mesquita, R.C.: Imposing boundary conditions in the meshless local Petrov-Galerkin method. IET Sci. Meas. Technol. 2(6), 387–394(2008)
Article
Google Scholar
Krohne, K., Gi-Ho, P., Ping, L.E.: A two-dimensional smoothed particle time-domain method. In: Asia Pacific Microwave Conference, art. no. 4958480 (2008)
Lai, S.J., Wang, B.Z., Duan, Y.: Meshless radial basis function method for transient electromagnetic computations. IEEE Trans. Magn. 44(10), 2288–2295 (2008)
Article
Google Scholar
Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method. World Scientific Publishing (2003)
Liu, B., Liu, G.R.: Smoothed Particle Hydrodynamics—A mesh-free particle method. World Scientific Publishing (2003)
Liu, B., Liu, G.R.: Restoring particle consistency in smoothed particle hydrodynamics. Appl. Numer. Math. 56(1), 19–36 (2006)
MathSciNet
MATH
Article
Google Scholar
Liu, B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17(1), 25–76 (2010)
MathSciNet
Article
Google Scholar
Liu, X., Wang, B.Z., Lai, S.: Element-free Galerkin method for transient electromagnetic field simulation. Microw. Opt. Technol. Lett. 50(1), 134–138 (2008)
Article
Google Scholar
Mendes, M.L., Pimenta, L.C.A., Mesquita, R.C., Silva, E.J., Santana, T.C.: Smoothed particle electromagnetics with boundary absorbing condition using perfectly matched layers. IET Conference Publications, (537 CP), pp. 164–165 (2008)
Mirzaei, D., Dehghan, M.: A meshless based method for solution of integral equations. Appl. Numer. Math. 60(3), 245–262 (2010)
MathSciNet
MATH
Article
Google Scholar
Monaghan, J.J.: An introduction to SPH. Comput. Phys. Comm. 48, 89–96 (1988)
MATH
Article
Google Scholar
Monaghan, J.J., Lattanzio, J.C.: A refined particle method for astrophysical problems. Astron. Astrophys. 149, 135–143 (1985)
MATH
Google Scholar
Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)
Article
Google Scholar
Moussa, B.B.: On the convergence of SPH method for scalar conservation laws with boundary conditions. Methods Appl. Anal. 13(1), 29–62 (2006)
MathSciNet
MATH
Google Scholar
Namiki, T.: A new FDTD algorithm based on alternating-direction implicit method. IEEE Trans. Microwave Theor. Tech. 47(10), 2003–2007 (1999)
Article
Google Scholar
Park, G.H., Krohne, K., Bai, P., Er, P.L.: Applications of meshfree methods in electromagnetics. IET Conference Publications (537 CP), pp. 1–2 (2008)
Park, G.H., Krohne, K., Bai, P., Er, P.L.: Introduction to the smoothed particle hydrodynamics method in electromagnetics. Asia-Pacific Symposium on Electromagnetic Compatibility, pp. 582–585 (2008)
Sadiku, M.N.O.: Elements of Electromagnetics. Oxford University Press (2001)
Shanazari, K., Rabie, N.: A three dimensional adaptive nodes technique applied to meshless-type methods. Appl. Numer. Math. 59(6), 1187–1197 (2009)
MathSciNet
MATH
Article
Google Scholar
Soares, D. Jr.: Numerical modelling of electromagnetic wave propagation by meshless local petrov-galerkin formulations. Comput. Model. Eng. Sci. 50(2), 97–114 (2006)
MathSciNet
Google Scholar
Sullivan, D.M.: Electromagnetic Simulation using the FDTD Method. IEEE press (2000)
Taflove, A., Hagness, S.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (2000)
MATH
Google Scholar
Viana, S.A., Mesquita, R.C.: Moving least square reproducing kernel method for electromagnetic field computation. IEEE Trans. Magn. 35(3), 1372–1375 (1999)
Article
Google Scholar
Wang, J.G., Liu, G.R.: A point interpolation meshless method based on radial basis functions. Int. J. Numer. Methods Eng. 54, 1623–1648 (2002)
MATH
Article
Google Scholar
Yang, E., Mo, J. Liu, H., Xu, W., Wang, S.: Modification of the weak form to enforce electromagnetic field interface conditions in element-free Galerkin method. Int. J. Appl. Electromagn. Mech. 31(3), 127–145 (2009)
Google Scholar
Yu, Y., Chen, Z.: A 3-D radial point interpolation method for meshless time-domain modelling. IEEE Trans. Microwave Theor. Tech. 57(8), 2015–2020 (2009)
MathSciNet
Article
Google Scholar